AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Kentish Plover (Charadrius alexandrinus) and Little Tern (Sternula albifrons) prefer shells for nesting: A field experiment

Macarena Castroa( )Andrés De la CruzaNuria Martin-SanjuanbAlejandro Pérez-Hurtadoa,b
Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Departamento de Biología, Universidad de Cádiz, Puerto Real, Spain
Servicios centrales de Investigación Salinas de la Esperanza, Universidad de Cádiz, Puerto Real, Spain
Show Author Information

Abstract

Shorebird populations are declining worldwide, mainly due to human disturbances and loss of coastal wetlands. However, supratidal habitats as saltpans could play a role in buffering human impact. Saltpans have shown to be important as feeding or breeding sites of some shorebird species. A potential conservation strategy to increase shorebird populations in saltpans is to manipulate the cues that birds use to select optimal breeding habitat. Here it is hypothesized that shorebirds are attracted to bivalve shells due to the advantages they offer. Following this hypothesis, we supplemented a restored saltpan in 2019 and 2021 with bivalve shells, expecting an increase in the number of breeding birds’ nests. More than 75% of Kentish Plover (Charadrius alexandrinus) and Little Tern (Sternula albifrons) nests were found in patches with shells in both years. The best model for both species indicates that the presence of shells is the factor that most correlates with the location of nests. The probability of choosing one place over another to settle their nest increases in areas with an abundance of shells, double in the case of the Kentish Plover and triple in the case of the Little Tern. The result of this study may constitute a valuable tool for attracting birds to restored saltpans and could contribute to the success of expensive restoration projects where time is usually a constraint.

References

 
Akaike, H., 1973. Information theory and the maximum likelihood principle. In: Petrov, B.N., Csaki, B.F. (Eds.), Second International Symposium on Information Theory. Akademiai Ki à do, Budapest, pp. 267–281.
 

Amat, J.A., Fraga, R.M., Arroyo, G.M., 1999. Brood desertion and polygamous breeding in the Kentish plover Charadrius alexandrinus. Ibis 141, 596–607. https://doi.org/10.1111/j.1474-919X.1999.tb07367.x.

 

Anteau, M.J., Sherfy, M.H., Wiltermuth, M.T., 2012. Selection indicates preference in diverse habitats: a ground-nesting bird Charadrius melodus using reservoir shoreline. PLoS One 7, e30347. https://doi.org/10.1371/journal.pone.0030347.

 

Athearn, N.D., Takekawa, J.Y., Bluso-Demers, J.D., Shinn, J.M., Arriana Brand, L., Robinson-Nilsen, C.W., et al., 2012. Variability in habitat value of commercial salt production ponds: implications for waterbird management and tidal marsh restoration planning. Hydrobiologia 697, 139–155. https://doi.org/10.1007/s10750-012-1177-y.

 

Bailey, L.D., Ens, B.J., Both, C., Heg, D., Oosterbeek, K., van de Pol, M., 2017. No phenotypic plasticity in nest-site selection in response to extreme flooding events. Philos. T. Roy. Soc. B 372, 20160139. https://doi.org/10.1098/rstb.2016.0139.

 
BirdLife International, 2022. Species Factsheet: Charadrius alexandrinus. Downloaded from. http://www.birdlife.org.on.23/10/2022.
 
Canty, A., Ripley, B., 2021. Boot: Bootstrap R (S-Plus) Functions. R Package Version 1, pp. 3–28.
 
Castro, M., Martín-San Juan, N., Pérez-Hurtado, A., 2019. Breeding Monitoring in Salinas La Esperanza. Satpan Initiative Project. Technical report.
 

Chokri, M.A., Selmi, S., 2011. Nesting ecology of pied avocet Recurvirostra avosetta in Sfax salina, Tunisia. Ostrich 82, 11–16. https://doi.org/10.2989/00306525.2011.556789.

 

Colwell, M.A., Meyer, J.J., Hardy, M.A., McAllister, S.E., Transou, A.N., Levalley, R.R., et al., 2011. Western snowy plovers Charadrius alexandrinus nivosus select nesting substrates that enhance egg crypsis and improve egg survival. Ibis 153, 303–311. https://doi.org/10.1111/j.1474-919X.2011.01100.x.

 

Crisman, T.L., Takavakoglou, V., Alexandridis, T., Antonopoulos, V., Zalidis, G., 2009. Rehabilitation of abandoned saltworks to maximize conservation, ecotourism and water treatment potential. Glob. Nest J. 11, 24–31.

 

de Melo Soares, R.H.R., de Assunção, C.A., de Oliveira Fernandes, F., Marinho-Soriano, E., 2018. Identification and analysis of ecosystem services associated with biodiversity of saltworks. Ocean Coast Manag. 163, 278–284. https://doi.org/10.1016/j.ocecoaman.2018.07.007.

 
del Hoyo, J., Wiersma, P., Kirwan, G.M., Collar, N., Boesman, P.F.D., Sharpe, C.J., 2021. Kentish plover Charadrius alexandrinus. In: Keeney, B.K. (Ed.), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY.
 

El Malki, S., Joulami, L., El Mdari, M., El Hamoumi, R., 2018. Nest site characteristics and breeding biology of Kentish Plover in the saltpans of Sidi Moussa, Morocco. Wader Study 125, 107–120. https://doi.org/10.18194/ws.00115.

 

Fraga, R.M., Amat, J.A., 1996. Breeding biology of a Kentish plover Charadrius alexandrinus population in an inland saline lake. Ardeola 43, 69–85.

 

Galbraith, H., Jones, R., Park, R., Clough, J., Herrod-Julius, S., Harrington, B., et al., 2002. Global climate change and sea-level rise: potential losses of intertidal habitat for shorebirds. Waterbirds 25, 173–183. https://doi.org/10.1675/1524-4695(2002)025[0173:GCCASL]2.0.CO;2.

 
Gochfeld, M., Burger, J., Garcia, E., 2020. Little tern Sternula albifrons. In: Keeney, B.K. (Ed.), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY.
 

Gómez, J., Ramo, C., Troscianko, J., Stevens, M., Castro, M., Pérez-Hurtado, A., et al., 2018. Individual egg camouflage is influenced by microhabitat selection and use of nest materials in ground-nesting birds. Behav. Ecol. Sociobiol. 72, 142. https://doi.org/10.1007/s00265-018-2558-7.

 

Hansell, M., 2000. Bird Nests and Construction Behaviour. Cambridge University Press, Cambridge.

 

Horton, B.P., Shennan, I., Bradley, S.L., Cahill, N., Kirwan, M., Kopp, R.E., et al., 2018. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nat. Commun. 9, 2687. https://doi.org/10.1038/s41467-018-05080-0.

 

Liñán-Cembrano, G., Castro, M., Amat, J.A., Perez, A., Rendón, M.A., Ramo, C., 2021. Quail eggs in artificial nests change their coloration when exposed to ambient conditions: implication for studies on nest predation. PeerJ 9, e11725. https://doi.org/10.7717/peerj.11725.

 

Martins, F., Pedrosa, A., da Silva, M.F., Fidélis, T., Antunes, M., Roebeling, P., 2020. Promoting tourism businesses for “Salgado de Aveiro” rehabilitation. J. Outdo. Recreat. Tour. 29, 100236 https://doi.org/10.1016/j.jort.2019.100236.

 

Masero, J.A., 2003. Assessing alternative anthropogenic habitats for conserving waterbirds: salinas as buffer areas against the impact of natural habitat loss for shorebirds. Biodivers. Conserv. 12, 1157–1173.

 

Masero, J.A., Perez-Hurtado, A., Castro, M., Arroyo, G.M., 2000. Complementary use of intertidal mudflats and adjacent salinas by foraging waders. Ardea 88, 177–191.

 
Medartsal-Sustainable Management Model for Mediterranean Artisanal Salinas (MEDARTSAL), 2021. Salinas Database in the Mediterranean. Technical report.
 

Norte, A.C., Ramos, J.A., 2004. Nest-site selection and breeding biology of Kentish Plover Charadrius alexandrinus on sandy beaches of the Portuguese West coast. Ardeola 51, 255–268.

 

Powell, A.N., 2001. Habitat characteristics and nest success of Snowy Plovers associated with California Least Tern colonies. Condor 103, 785–792. https://doi.org/10.1093/condor/103.4.785.

 

Pruaño, F.O., Cabral, J.A., Hortas, F., 2012. Tres años de acciones a favor de los larolimívolas en humedales gaditanos. Quercus 313, 16–24.

 
R Core Team, 2022. R: A Language and Environment for Statisticalbcomputing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
 

Ramos, J., Pinto, P., Pintassilgo, P., Resende, A., Cancela da Fonseca, L., 2022. Activating an artisanal saltpan: tourism crowding in or waterbirds crowding out? Int. J. Cult. Tourism Hospit. Res. 16, 294–305. https://doi.org/10.1108/IJCTHR-04-2021-0101.

 

Reynolds, S.J., Perrins, C.M., 2010. Dietary calcium availability and reproduction in birds. Curr. Ornithol. 17, 31–74.

 

Rocha, A.D., Fonseca, D., Masero, J.A., Ramos, J.A., 2016. Coastal saltpans are a good alternative breeding habitat for Kentish plover Charadrius alexandrinus when umbrella species are present. J. Avian Biol. 47, 824–833. https://doi.org/10.1111/jav.00883.

 

Rounds, R.A., Erwin, R.M., Porter, J.H., 2004. Nest-site selection and hatching success of waterbirds in coastal Virginia: some results of habitat manipulation. J. Field Ornithol. 75, 317–329. https://doi.org/10.1648/0273-8570-75.4.317.

 

Sanchez-Guzman, J.M., Moran, R., Masero, J.A., Corbacho, C., Costillo, E., Villegas, A., et al., 2007. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: the importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16, 3333–3344. https://doi.org/10.1007/s10531-006-9018-9.

 
Servicios Centrales de Investigación Salinas de la Esperanza (SCI-SE), 2021. Seguimiento y evaluación de las aves reproductoras en la salina La Esperanza. Universidad de Cádiz.. Technical report.
 

Sokal, R.R., Rohlf, F.J., 1970. Biometry: the Principles and Practice of Statistics in Biological Research. W. H. Freeman and Company, New York.

 
Stralberg, D., Herzog, M., Warnock, N., Nur, N., Valdez, S., 2006. Habitat-based Modeling of Wetland Bird Communities: an Evaluation of Potential Restoration Alternatives for South San Francisco Bay. Draft Final Report to California Coastal Conservancy. PRBO Conservation Science, Petaluma, CA.
 
Stroud, D.A., Baker, A., Blanco, D.E., Davidson, N.C., Ganter, B., Gill Jr., R.E., et al., 2006. The conservation and population status of the world’s waders at the turn of the millennium. In: Beoere, G.C., Galbraith, C.A., Straud, D.A. (Eds.), Waterbirds Around the World. A Global Overview of the Conservation, Management and Research of the World’s Waterbird Flyways. The Stationery Office, Edinburgh, pp. 643–648.
 

Winton, B.R., Leslie, D.M., Rupert, J.R., 2000. Breeding ecology and management of snowy plovers in north-central Oklahoma. J. Field Ornithol. 71, 573–584. https://doi.org/10.1648/0273-8570-71.4.573.

 

Wu, F., Lei, W., Lloyd, H., Zhang, Z., 2020. Predictors of Gull-billed tern (Gelochelidon nilotica) nest survival in artificial coastal saltpans, Bohai Bay, China. PeerJ 8, e10054.

 

Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x.

Avian Research
Article number: 100158
Cite this article:
Castro M, De la Cruz A, Martin-Sanjuan N, et al. Kentish Plover (Charadrius alexandrinus) and Little Tern (Sternula albifrons) prefer shells for nesting: A field experiment. Avian Research, 2024, 15(1): 100158. https://doi.org/10.1016/j.avrs.2024.100158

148

Views

5

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 August 2023
Revised: 12 January 2024
Accepted: 15 January 2024
Published: 21 January 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return