AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The clutch size, incubation behavior of Reeves's Pheasant (Syrmaticus reevesii) and their responses to ambient temperature and precipitation

Ting JinaShuai LuaYunqi WangaJunqin HuaaZhengxiao LiuaQian HuaYating LiuaYuze ZhaoaJianqiang LiaJiliang Xua,b( )
School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China
Show Author Information

Abstract

Weather conditions play a pivotal role in embryo development and parental incubation costs, potentially impacting the clutch size and incubation behavior of birds. Understanding these effects is crucial for bird conservation. Reeves's Pheasant (Syrmaticus reevesii) is a threatened species endemic to China, which is characterized by female-only incubation. However, there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species. Using satellite tracking, we tracked 27 wild female Reeves's Pheasants from 2020 to 2023 in Hubei Province, China. We explored their clutch size and incubation behavior, as well as their responses to ambient temperature and precipitation. Clutch size averaged 7.75 ± 1.36, had an association with average ambient temperature and average daily precipitation during the egg-laying period, and was potentially linked to female breeding attempts. Throughout the incubation period, females took an average of 0.73 ± 0.46 recesses every 24 h, with an average recess duration of 100.80 ± 73.37 min and an average nest attendance of 92.98 ± 5.27%. They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00. Furthermore, females rarely left nests when daily precipitation was high. Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation, as well as day of incubation. Additionally, there was a positive correlation between clutch size and recess duration. These results contribute valuable insights into the life-history features of this endangered species.

References

 

Amininasab, S.M., Kingma, S.A., Birker, M., Hildenbrandt, H., Komdeur, J., 2016. The effect of ambient temperature, habitat quality and individual age on incubation behaviour and incubation feeding in a socially monogamous songbird. Behav. Ecol. Sociobiol. 70, 1591-1600. https://doi.org/10.1007/s00265-016-2167-2.

 

Arnold, T.W., Rohwer, F.C., Armstrong, T., 1987. Egg viability, nest predation, and the adaptive significance of clutch size in Prairie Ducks. Am. Nat. 130, 643-653. https://doi.org/10.1086/284736.

 

Bambini, G., Schlicht, E., Kempenaers, B., 2019. Patterns of female nest attendance and male feeding throughout the incubation period in Blue Tits Cyanistes caeruleus. Ibis 161, 50-65. https://doi.org/10.1111/ibi.12614.

 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. https://doi.org/10.18637/jss.v067.i01.

 

Batt, B.D.J., Cornwell, G.W., 1972. The effects of cold on mallard embryos. J. Wildl. Manag. 36, 745-751. https://doi.org/10.2307/3799426.

 

Brown, M., Downs, C.T., 2003. The role of shading behaviour in the thermoregulation of breeding crowned plovers (Vanellus coronatus). J. Therm. Biol. 28, 51-58. https://doi.org/10.1016/S0306-4565(02)00036-0.

 

Bryan, S.M., Bryant, D.M., 1999. Heating nest-boxes reveals an energetic contraint on incubation behaviour in great tits, Parus major. P. Roy. Soc. B-Biol. Sci. 266, 157-162. https://doi.org/10.1098/rspb.1999.0616.

 

Brynychová, K., Šálek, M.E., Vozabulová, E., Sladecek, M., 2020. Daily rhythms of female self-maintenance correlate with predation risk and male nest attendance in a biparental Wader. J. Biol. Rhythm. 35, 489-500. https://doi.org/10.1177/0748730420940465.

 

Bueno-Enciso, J., Barrientos, R., Sanz, J.J., 2017. Incubation behaviour of Blue Cyanistes caeruleus and great tits Parus major in a mediterranean habitat. Acta Ornithol. 52, 21-34. https://doi.org/10.3161/00016454ao2017.52.1.003.

 

Carter, A.W., Hopkins, W.A., Moore, I.T., DuRant, S.E., 2014. Influence of incubation recess patterns on incubation period and hatchling traits in wood ducks Aix sponsa. J. Avian Biol. 45, 273-279. https://doi.org/10.1111/j.1600-048X.2013.00275.x.

 

Cervencl, A., Esser, W., Maier, M., Oberdiek, N., Thyen, S., Wellbrock, A., et al., 2011. Can differences in incubation patterns of Common Redshanks Tringa totanus be explained by variations in predation risk? J. Ornithol. 152, 1033-1043. https://doi.org/10.1007/s10336-011-0696-z.

 

Christians, J.K., 2002. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. 77, 1-26. https://doi.org/10.1017/s1464793101005784.

 

Christians, J.K., Evanson, M., Aiken, J.J., 2001. Seasonal decline in clutch size in European starlings: a novel randomization test to distinguish between the timing and quality hypotheses. J. Anim. Ecol. 70, 1080-1087. https://doi.org/10.1046/j.0021-8790.2001.00566.x.

 

Coates, P.S., Delehanty, D.J., 2008. Effects of environmental factors on incubation patterns of Greater Sage-Grouse. Condor 110, 627-638. https://doi.org/10.1525/cond.2008.8579.

 

Coe, B.H., Beck, M.L., Chin, S.Y., Jachowski, C.M.B., Hopkins, W.A., 2015. Local variation in weather conditions influences incubation behavior and temperature in a passerine bird. J. Avian Biol. 46, 385-394. https://doi.org/10.1111/jav.00581.

 

Conrey, R.Y., Skagen, S.K., Adams, A.A.Y., Panjabi, A.O., 2016. Extremes of heat, drought and precipitation depress reproductive performance in shortgrass prairie passerines. Ibis 158, 614-629. https://doi.org/10.1111/ibi.12373.

 

Conway, C.J., Martin, T.E., 2000a. Effects of ambient temperature on avian incubation behavior. Beha. Ecol. 11, 178-188. https://doi.org/10.1093/beheco/11.2.178.

 

Conway, C.J., Martin, T.E., 2000b. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Evolution 54, 670-685. https://doi.org/10.1111/j.0014-3820.2000.tb00068.x.

 

Cooper, C.B., Hochachka, W.M., Butcher, G., Dhondt, A.A., 2005. Seasonal and latitudinal trends in clutch size: thermal constraints during laying and incubation. Ecology 86, 2018-2031. https://doi.org/10.1890/03-8028.

 

Cooper, C.B., Voss, M.A., 2013. Avian incubation patterns reflect temporal changes in developing clutches. PLoS One 8, e65521. https://doi.org/10.1371/journal.pone.0065521.

 

Cresswell, W., Holt, S., Reid, J.M., Whitfield, D.P., Mellanby, R.J., 2003. Do energetic demands constrain incubation scheduling in a biparental species? Behav. Ecol. 14, 97-102. https://doi.org/10.1093/beheco/14.1.97.

 

Cresswell, W., Holt, S., Reid, J.M., Whitfield, D.P., Mellanby, R.J., Norton, D., et al., 2004. The energetic costs of egg heating constrain incubation attendance but do not determine daily energy expenditure in the pectoral sandpiper. Behav. Ecol. 15, 498-507. https://doi.org/10.1093/beheco/arh042.

 

Cresswell, W., McCleery, R., 2003. How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72, 356-366. https://doi.org/10.1046/j.1365-2656.2003.00701.x.

 

Decker, K.L., Conway, C.J., Fontaine, J.J., 2012. Nest predation, food, and female age explain seasonal declines in clutch size. Evol. Ecol. 26, 683-699. https://doi.org/10.1007/s10682-011-9521-7.

 

Deeming, D.C., 2002. Avian Incubation: Behaviour, Environment, and Evolution. Oxford University Press, New York.

 

Diez-Méndez, D., Cooper, C.B., Sanz, J.J., Verdejo, J., Barba, E., 2021. Deconstructing incubation behaviour in response to ambient temperature over different timescales. J. Avian Biol. 52, e02781. https://doi.org/10.1111/jav.02781.

 

Dillon, K.G., Conway, C.J., 2017. Nest predation risk explains variation in avian clutch size. Behav. Ecol. 29, 301-311. https://doi.org/10.1093/beheco/arx130.

 

DuRant, S.E., Hopkins, W.A., Hepp, G.R., Walters, J.R., 2013. Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biol. Rev. 88, 499-509. https://doi.org/10.1111/brv.12015.

 

Evans, K.L., Leech, D.I., Crick, H.Q.P., Greenwood, J.J.D., Gaston, K.J., 2009. Latitudinal and seasonal patterns in clutch size of some single-brooded British birds. Hous. Theor. Soc. 56, 75–85. https://doi.org/10.1080/00063650802648291.

 

Fontaine, J.J., Martin, T.E., 2006. Parent birds assess nest predation risk and adjust their reproductive strategies. Ecol. Lett. 9, 428-434. https://doi.org/10.1111/j.1461-0248.2006.00892.x.

 

Fu, Y.Q., Dai, B., Wen, L.Y., Chen, B.P., Dowell, S., Zhang, Z.W., 2017. Unusual incubation behavior and embryonic tolerance of hypothermia in the Sichuan Partridge (Arborophila rufipectus). J. Ornithol. 158, 707-715. https://doi.org/10.1007/s10336-016-1422-7.

 

Gasparini, J., Roulin, A., Gill, V.A., Hatch, S.A., Boulinier, T., 2006. Kittiwakes strategically reduce investment in replacement clutches. P. Roy. Soc. B-Biol. Sci. 273, 1551-1554. https://doi.org/10.1098/rspb.2005.3457.

 

Grudinskaya, V., Samsonov, S., Galkina, E., Grabovsky, A., Makarova, T., Vaytina, T., et al., 2022. Effects of spring weather on laying dates, clutch size, and nest survival of ground-nesting passerines in abandoned fields. Avian Conserv. Ecol. 17, 8. https://doi.org/10.5751/ace-02215-170208.

 

Hepp, G.R., Kennamer, R.A., Johnson, M.H., 2006. Maternal effects in Wood Ducks: incubation temperature influences incubation period and neonate phenotype. Funct. Ecol. 20, 307-314. https://doi.org/10.1111/j.1365-2435.2006.01108.x.

 

Hipfner, J.M., Gaston, A.J., deForest, L.N., 1997. The role of female age in determining egg size and laying date of thick-billed Murres. J. Avian Biol. 28, 271-278. https://doi.org/10.2307/3676939.

 

Hope, S.F., DuRant, S.E., Hallagan, J.J., Beck, M.L., Kennamer, R.A., Hopkins, W.A., 2021. Incubation temperature as a constraint on clutch size evolution. Funct. Ecol. 35, 909-919. https://doi.org/10.1111/1365-2435.13764.

 
IUCN, 2022. The IUCN Red List of Threatened Species. https://www.iucnredlist.org.
 

Jia, C.X., Sun, Y.H., Swenson, J.E., 2010. Unusual incubation behavior and embryonic tolerance of hypothermia by the Blood Pheasant (Ithaginis cruentus). Auk 127, 926-931. https://doi.org/10.1525/auk.2010.09254.

 

Karagicheva, J., Liebers, M., Rakhimberdiev, E., Hallinger, K.K., Saveliev, A., Winkler, D.W., 2016. Differences in size between first and replacement clutches match the seasonal decline in single clutches in Tree Swallows Tachycineta bicolor. Ibis 158, 607-613. https://doi.org/10.1111/ibi.12368.

 

Koenig, W.D., Walters, E.L., 2018. Causes of seasonal decline in reproduction of the cooperatively-breeding acorn woodpecker. J. Avian Biol. 49. https://doi.org/10.1111/jav.01784.

 

Laidlaw, R.A., Gunnarsson, T.G., Mendez, V., Carneiro, C., Porisson, B., Wentworth, A., et al., 2020. Vegetation structure influences predation rates of early nests in subarctic breeding waders. Ibis 162, 1225-1236. https://doi.org/10.1111/ibi.12827.

 

Lopez-Lopez, P., Perona, A.M., Egea-Casas, O., Morant, J., Urios, V., 2022. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. 68, 57-67. https://doi.org/10.1093/cz/zoab010.

 

Lu, S., Liu, Z.X., Tian, S., Song, K., Hu, Q., Li, J.Q., et al., 2022. Sex-Specific movement responses of Reeves's Pheasant to human disturbance: importance of body characteristics and reproductive behavior. Animals-Basel 12, 1619. https://doi.org/10.3390/ani12131619.

 

Martin, T.E., Boyce, A.J., Fierro-Calderon, K., Mitchell, A.E., Armstad, C.E., Mouton, J.C., et al., 2017. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct. Ecol. 31, 1231-1240. https://doi.org/10.1111/1365-2435.12819.

 

Martin, T.E., Martin, P.R., Olson, C.R., Heidinger, B.J., Fontaine, J.J., 2000. Parental care and clutch sizes in North and South American birds. Science 287, 1482-1485. https://doi.org/10.1126/science.287.5457.1482.

 

Moiron, M., Mathot, K.J., Dingemanse, N.J., 2018. To eat and not be eaten: diurnal mass gain and foraging strategies in wintering great tits. P. Roy. Soc. B-Biol. Sci. 285, 20172868. https://doi.org/10.1098/rspb.2017.2868.

 

Morrison, S.A., Bolger, D.T., 2002. Variation in a sparrow's reproductive success with rainfall: food and predator-mediated processes. Oecologia 133, 315-324. https://doi.org/10.1007/s00442-002-1040-3.

 

Mougeot, F., Benitez-Lopez, A., Casas, F., Garcia, J.T., Vinuela, J., 2014. A temperature-based monitoring of nest attendance patterns and disturbance effects during incubation by ground-nesting sandgrouse. J. Arid Environ. 102, 89-97. https://doi.org/10.1016/j.jaridenv.2013.11.010.

 

Nooker, J.K., Dunn, P.O., Whittingham, L.A., 2005. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225-1238. https://doi.org/10.1093/auk/122.4.1225.

 

Pagano, A.M., Williams, T.M., 2019. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: a validation with doubly labeled water. Ecol. Evol. 9, 4210-4219. https://doi.org/10.1002/ece3.5053.

 

Pendlebury, C.J., Bryant, D.M., 2005. Effects of temperature variability on egg mass and clutch size in Great Tits. Condor 107, 710-714. https://doi.org/10.1650/0010-5422.

 

Reid, J.M., Monaghan, P., Ruxton, G.D., 2000. The consequences of clutch size for incubation conditions and hatching success in starlings. Funct. Ecol. 14, 560-565. https://doi.org/10.1046/j.1365-2435.2000.t01-1-00446.x.

 

Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322-337. https://doi.org/10.1198/jabes.2009.08038.

 

Ringelman, K.M., Skaggs, C.G., 2019. Vegetation phenology and nest survival: diagnosing heterogeneous effects through time. Ecol. Evol. 9, 2121-2130. https://doi.org/10.1002/ece3.4906.

 

Robinson, T.J., Sefferman, L., Risch, T.S., 2010. Seasonal tradeoffs in reproductive investment in a multi-brooded passerine. Condor 112, 390-398. https://doi.org/10.1525/cond.2010.080038.

 

Rooneem, T.M., Robertson, R.J., 1997. The potential to lay replacement clutches by Tree Swallows. Condor 99, 228-231. https://doi.org/10.2307/1370246.

 

Schöll, E.M., Aparisi, M.P., Hille, S.M., 2019. Diurnal patterns of ambient temperature but not precipitation influence incubation behavior in Great Tits. J. Ornithol. 161, 529-538. https://doi.org/10.1007/s10336-019-01737-9.

 

Setash, C.M., Kendall, W.L., Olson, D., 2021. Factors influencing Cinnamon Teal nest attendance patterns. Ibis 163, 125-136. https://doi.org/10.1111/ibi.12838.

 

Shi, M., Fang, Y., Zhao, J.M., Klaus, S., Jiang, Y.X., Swenson, J.E., et al., 2019. Egg laying and incubation rhythm of the Chinese grouse (Tetrastes sewerzowi) at lianhuashan, gansu, China. Avian Res. 10, 23. https://doi.org/10.1186/s40657-019-0161-x.

 

Skagen, S.K., Adams, A.A.Y., 2012. Weather effects on avian breeding performance and implications of climate change. Ecol. Appl. 22, 1131-1145. https://doi.org/10.1890/11-0291.1.

 

Spiegel, C.S., Haig, S.M., Goldstein, M.I., Huso, M., 2012. Factors affecting incubation patterns and sex roles of Black Oystercatchers in Alaska. Condor 114, 123-134. https://doi.org/10.1525/cond.2011.100094.

 

Stoleson, S.H., Beissinger, S.R., 1999. Egg viability as a constraint on hatching synchrony at high ambient temperatures. J. Anim. Ecol. 68, 951-962. https://doi.org/10.1046/j.1365-2656.1999.00342.x.

 

Stothart, M.R., Elliott, K.H., Wood, T., Hatch, S.A., Speakman, J.R., 2016. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants. J. Exp. Biol. 219, 2192-2200. https://doi.org/10.1242/jeb.130526.

 

Thompson, S.C., Raveling, D.G., 1987. Incubation behavior of Emperor Geese compared with other geese: interactions of predation, body size, and energetics. Auk 104, 707-716. https://doi.org/10.1093/auk/104.4.707.

 

Tombre, I.M., Erikstad, K.E., Bunes, V., 2012. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985-992. https://doi.org/10.1007/s00300-011-1145-4.

 

Tulp, I., Schekkerman, H., 2006. Time allocation between feeding and incubation in uniparental arctic-breeding shorebirds: energy reserves provide leeway in a tight schedule. J. Avian Biol. 37, 207-218. https://doi.org/10.1111/j.2006.0908-8857.03519.x.

 

Van Turnhout, C.A.M., Foppen, R.P.B., Leuven, R., Van Strien, A., Siepel, H., 2010. Life-history and ecological correlates of population change in Dutch breeding birds. Biol. Conserv. 143, 173-181. https://doi.org/10.1016/j.biocon.2009.09.023.

 

Veiga, J.P., 1992. Hatching asynchrony in the House Sparrow: a test of the egg-viability hypothesis. Am. Nat. 139, 669–675. https://doi.org/10.1086/285351.

 

Verhulst, S., Vanbalen, J.H., Tinbergen, J.M., 1995. Seasonal decline in reproductive success of the great tit: variation in time or quality. Ecology 76, 2392-2403. https://doi.org/10.2307/2265815.

 

Wang, Q.Y., Zhao, Y.Z., Luo, X., Hua, J.Q., Li, Z., Xu, J.L., 2016. Potential nest predators of Syrmaticus reevesii based on camera traps and artificial nests. Chin. J. Appl. Ecol. 27, 1968-1974. https://doi.org/10.13287/j.1001-9332.201606.020.

 

Webb, D.R., 1987. Thermal tolerance of avian embryos: a review. Condor 89, 874-898. https://doi.org/10.2307/1368537.

 

Weidinger, K., 2002. Interactive effects of concealment, parental behaviour and predators on the survival of open passerine nests. J. Anim. Ecol. 71, 424-437. https://doi.org/10.1046/j.1365-2656.2002.00611.x.

 

Weiser, E.L., Brown, S.C., Lanctot, R.B., Gates, H.R., Abraham, K.F., Bentzen, R.L., et al., 2018. Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds. J. Avian Biol. 49 https://doi.org/10.1111/jav.01531.

 

Whittingham, M.J., Stephens, P.A., Bradbury, R.B., Freckleton, R.P., 2006. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182-1189. https://doi.org/10.1111/j.1365-2656.2006.01141.x.

 

Wiebe, K.L., Martin, K., 1995. Ecological and physiological effects on egg laying intervals in ptarmigan. Condor 97, 708-717. https://doi.org/10.2307/1369179.

 

Wiebe, K.L., Martin, K., 1997. Effects of predation, body condition and temperature on incubation rhythms of white-tailed ptarmigan Lagopus leucurus. Wildl. Biol. 3, 219-227. https://doi.org/10.2981/wlb.1997.027.

 

Wiebe, K.L., Martin, K., 2000. The use of incubation behaviour to adjust avian reproductive costs after egg laying. Behav. Ecol. Sociobiol. 48, 463-470. https://doi.org/10.1007/s002650000259.

 

Williams, T.D., 2005. Mechanisms underlying the costs of egg production. Bioscience 55, 39-48. https://doi.org/10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.

 

Wilson, R.P., White, C.R., Quintana, F., Halsey, L.G., Liebsch, N., Martin, G.R., et al., 2006. Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J. Anim. Ecol. 75, 1081-1090. https://doi.org/10.1111/j.1365-2656.2006.01127.x.

 

Winder, V.L., Herse, M.R., Hunt, L.M., Gregory, A.J., McNew, L.B., Sandercock, B.K., 2016. Patterns of nest attendance by female Greater Prairie-Chickens (Tympanuchus cupido) in northcentral Kansas. J. Ornithol. 157, 733-745. https://doi.org/10.1007/s10336-016-1330-x.

 

Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M., 2011. Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334, 1398-1401. https://doi.org/10.1126/science.1210908.

 

Zhang, X.H., Xu, J.L., Zhang, Z.W., Xie, F.L., Zhang, K.Y., Zhu, J.G., 2004. A study on the incubation behavior of Reeves's pheasant (Syrmaticus reevesii) by radio tracking. J. Beijing Normal Univ. (Nat. Sci.) 2, 255-259. (in Chinese with English abstract).

 

Zhang, Z.H., 2016. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 4 https://doi.org/10.21037/atm.2016.03.35.

 

Zhao, Y.Z., Wang, Z.C., Xu, J.L., Luo, X., An, L.D., 2013. Activity rhythm and behavioral time budgets of wild Reeves's pheasant (Syrmaticus reevesii) using infrared camera. Chin. Acta Ecol. Sin. 33, 6021-6027. (in Chinese with English abstract).

 

Zhou, C.F., Xu, J.L., Zhang, Z.W., 2015. Dramatic decline of the Vulnerable Reeves's pheasant Syrmaticus reevesii, endemic to central China. Oryx 49, 529-534. https://doi.org/10.1017/s0030605313000914.

Avian Research
Article number: 100168
Cite this article:
Jin T, Lu S, Wang Y, et al. The clutch size, incubation behavior of Reeves's Pheasant (Syrmaticus reevesii) and their responses to ambient temperature and precipitation. Avian Research, 2024, 15(1): 100168. https://doi.org/10.1016/j.avrs.2024.100168

203

Views

12

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 06 October 2023
Revised: 23 February 2024
Accepted: 23 February 2024
Published: 27 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return