AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (767.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hard life for sons in the nest? Sex-dependent offspring mortality in Great Tits in urban and forest areas

Nóra Ágha,b,c,1( )Henriett Anna Dalváric,d,1Krisztián SzabócIvett Pipolya,bAndrás Likera,b
HUN-REN-PE Evolutionary Ecology Research Group, University of Pannonia, H-8200, Veszprém, Pf. 1158., Hungary
Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, H-8200, Pf. 1158., Veszprém, Hungary
Molecular Ecology Research Group, Department of Ecology, University of Veterinary Medicine Budapest, H-1400, Pf. 2., Budapest, Hungary
Synlab Hungary Ltd., H-1211, Weiss Manfréd Str. 5-7, Budapest, Hungary

1 Nóra Ágh and Henriett Anna Dalvári are joint first authors.

Show Author Information

Abstract

Sex-biased mortality can occur in birds during development, for example due to sexual differences in energy requirement and/or environmental sensitivity, or the effects of sex hormones or sex differences in the expression of mutations linked to sex chromosomes. The extent of sex-bias in mortality may also be related to environmental conditions that influence offspring development and survival. Urban areas often provide poorer conditions for nestling development resulting in higher offspring mortality compared to natural areas, which may accelerate sex differences in offspring mortality in cities. To test this hypothesis, we examined the sex ratio of dead offspring in Great Tits (Parus major), using 427 samples of unhatched eggs and dead nestlings collected in two urban and two forest sites between 2013 and 2019. The ratio of males in the whole sample of dead offspring (56.9%) was significantly higher than expected by an 1:1 ratio, and the strongest sex biases were detected in urban areas (57.6% males) and in young nestlings (< 14 days old, 59.0% males). However, the sex ratios of dead offspring did not differ significantly among study sites and between offspring developmental stages. 29.3% of unhatched eggs contained a visible embryo, and the proportion of embryo-containing unhatched eggs did not differ significantly between urban and forest study sites. These results suggest male-biased offspring mortality in Great Tits, and highlight the need of large datasets to detect subtle differences between habitats and developmental stages.

References

 

Ágh, N., Kovács, S., Nemesházi, E., Szabó, K., 2018. Univerzális, ivarhatározáshoz használt CHD1 markerek alkalmazhatósága különbözö madárrendekben. Magy. Állatorvosok Lapjallatorvosok Lapja 140, 47-59.

 

Ágh, N., Pipoly, I., Szabó, K., Vincze, E., Bókony, V., Seress, G., et al., 2020. Does offspring sex ratio differ between urban and forest populations of great tits (Parus major)? Biol. Futur. 71, 99-108.

 

Bailly, J., Scheifler, R., Berthe, S., Clément-Demange, V.A., Leblond, M., Pasteur, B., et al., 2016. From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. J. Ornithol. 157, 377-392.

 
Bates, D., Maechler, M., Bolker, B., Walker, S., 2014. Fitting linear mixed-effects models using lme4. J. Stat. Softw. arXiv, 1406.5823.
 

Benito, M.M., González-Solís, J., 2007. Sex ratio, sex-specific chick mortality and sexual size dimorphism in birds. J. Evol. Biol. 20, 1522-1530.

 

Bize, P., Roulin, A., Tella, J.L., Richner, H., 2005. Female-biased mortality in experimentally parasitized Alpine Swift Apus melba nestlings. Funct. Ecol. 19, 405-413.

 

Bouvier, J.C., Boivin, T., Charmantier, A., Lambrechts, M., Lavigne, C., 2016. More daughters in a less favourable world: breeding in intensively-managed orchards affects tertiary sex-ratio in the great tit. Basic Appl. Ecol. 17, 638-647.

 

Bowers, E.K., Thompson, C.F., Sakaluk, S.K., 2015. Persistent sex-by-environment effects on offspring fitness and sex-ratio adjustment in a wild bird population. J. Anim. Ecol. 84, 473-486.

 

Chamberlain, D., Cannon, A.R., Toms, M.P., Leech, D.I., Hatchwell, B.J., Gaston, K.J., 2009. Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151, 1-18.

 

Cichoń, M., Sendecka, J., Gustafsson, L., 2005. Male-biased sex ratio among unhatched eggs in great tit Parus major, blue tit P. caeruleus and collard flycatcher Ficedula albicollis. J. Avian Biol. 36, 386-390.

 

Clutton-Brock, T., Sheldon, B.C., 2010. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562-573.

 

Clutton-Brock, T.H., Albon, S.D., Guinness, F.E., 1985. Parental investment and sex differences in juvenile mortality in birds and mammals. Nature 313, 131-133.

 

Corsini, M., Schöll, E.M., Di Lecce, I., Chatelain, M., Dubiec, A., Szulkin, M., 2021. Growing in the city: urban evolutionary ecology of avian growth rates. Evol. Appl. 14, 69-84.

 

Donald, P.F., 2007. Adult sex ratios in wild bird populations. Ibis 149, 671-692.

 

Eberhart-Phillips, L.J., Küpper, C., Miller, T.E., Cruz-López, M., Maher, K.H., dos Remedios, N., et al., 2017. Sex-specific early survival drives adult sex ratio bias in snowy plovers and impacts mating system and population growth. Proc. N. Aca. Sci., 114, E5474-E5481.

 

Eeva, T., Sillanpää, S., Lehikoinen, E., 2012. Metal pollution does not bias offspring sex ratio in great tit (Parus major). Environ. Sci. Pollut. Res. 19, 2870-2878.

 

Folstad, I., Karter, A.J., 1992. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603-622.

 

Griffiths, R., Double, M.C., Orr, K., Dawson, R.J.G., 1998. A DNA test to sex most birds. Mol. Ecol. 7, 1071-1075.

 

Haldane, J.B.S., 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101-109.

 

Hemmings, N., Evans, S., 2020. Unhatched eggs represent the invisible fraction in two wild bird populations. Biol. Lett., 16, 20190763.

 

Jensen, H., Sæther, B.E., Ringsby, T.H., Tufto, J., Griffith, S.C., Ellegren, H., 2003. Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J. Evol. Biol. 16, 1296-1307.

 

Jones, K.S., Nakagawa, S., Sheldon, B.C., 2009. Environmental sensitivity in relation to size and sex in birds: meta-regression analysis. Am. Nat. 174, 122-133.

 

Kalmbach, E., Furness, R.W., Griffiths, R., 2005. Sex-biased environmental sensitivity: natural and experimental evidence from a bird species with larger females. Behav. Ecol. 16, 442-449.

 

Kato, T., Matsui, S., Terai, Y., Tanabe, H., Hashima, S., Kasahara, S., et al., 2017. Male-specific mortality biases secondary sex ratio in Eurasian tree sparrows Passer montanus. Ecol. Evol. 7, 10675-10682.

 
Kekkonen, J., 2017. Pollutants in urbanized areas: direct and indirect effects on bird populations. In: Murgui, E., Hedblom, M. (Eds.), Ecology and Conservation of Birds in Urban Environments. Springer International Publishing, Cham, pp. 227–250.
 

Kirkpatrick, C., Conway, C.J., Ali, M.H., 2009. Sanitation of entire broods of dead nestlings may bias cause-specific nest failure rates. Ibis. 151, 207-211.

 

Kubacka, J., Cichoń, M., 2020. An immune challenge of female great tits decreases offspring survival and has sex-specific effects on offspring body size. Acta Ethol. 23, 173-181.

 

Marques-Santos, F., Dingemanse, N.J., 2020. Weather effects on nestling survival of great tits vary according to the developmental stage. J. Avian Biol. 51 (jav), 02421.

 

Martyka, R., Rutkowska, J., Dybek-Karpiuk, A., Cichoń, M., Walasz, K., 2010. Sexual dimorphism of egg size in the European Blackbird Turdus merula. J. Ornithol. 151, 827-831.

 

Møller, A.P., Diaz, M., Flensted-Jensen, E., Grim, T., Ibáñez-Álamo, J.D., Jokimäki, J., et al., 2012. High urban population density of birds reflects their timing of urbanization. Oecologia, 170, 867-875.

 

Myers, J.H., 1978. Sex ratio adjustment under food stress: maximization of quality or numbers of offspring? Am. Nat. 112, 381-388.

 

Nager, R.G., Monaghan, P., Houston, D.C., Genovart, M., 2000. Parental condition, brood sex ratio and differential young survival: an experimental study in gulls (Larus fuscus). Behav. Ecol. Sociobiol. 48, 452-457.

 

Nicolaus, M., Michler, S.P.M., Ubels, R., van der Velde, M., Komdeur, J., Komdeur, J., et al., 2009. Sex-specific effects of altered competition on nestling growth and survival: an experimental manipulation of brood size and sex ratio. J. Anim. Ecol. 78, 414-426.

 

Oddie, K.R., 2000. Size matters: competition between male and female great tit offspring. J. Anim. Ecol. 69, 903-912.

 

Pipoly, I., Bókony, V., Kirkpatrick, M., Donald, P.F., Székely, T., Liker, A., 2015. The genetic sex-determination system predicts adult sex ratios in tetrapods. Nature 527, 91-94.

 

Råberg, L., Stjernman, M., Nilsson, J. Å., 2005. Sex and environmental sensitivity in blue tit nestlings. Oecologia 145, 496-503.

 

Rejt, L., Gryczynska-Siemaiatkowska, A., Rutkowski, R., Malewska, A., 2005. Does egg sex ratio in urban kestrels (Falco tinnunculus) differ from parity? Pol. J. Ecol. 53, 545-552.

 

Rosivall, B., Szöllősi, E., Hasselquist, D., Török, J., 2010. Males are sensitive — sex-dependent effect of rearing conditions on nestling growth. Behav. Ecol. Sociobiol. 64, 1555-1562.

 

Rowland, E., Love, O.P., Verspoor, J.J., Sheldon, L., Williams, T.D., 2007. Manipulating rearing conditions reveals developmental sensitivity in the smaller sex of a passerine bird, the European starling Sturnus vulgaris. J. Avian Biol. 38, 612-618.

 

Santoro, S., Green, A.J., Speakman, J.R., Figuerola, J., 2015. Facultative and non-facultative sex ratio adjustments in a dimorphic bird species. Oikos 124, 1215-1224.

 

Schacht, R., Beissinger, S.R., Wedekind, C., Jennions, M.D., Geffroy, B., Liker, A., et al., 2022. Adult sex ratios: causes of variation and implications for animal and human societies. Commun. Biol. 5, 1273.

 

Seress, G., Vincze, E., Pipoly, I., Hammer, T., Papp, S., Preiszner, B., et al., 2017. Effects of capture and video-recording on the behavior and breeding success of Great Tits in urban and forest habitats. J. Field Ornithol. 88, 299-312.

 

Seress, G., Hammer, T., Bókony, V., Vincze, E., Preiszner, B., Pipoly, I., et al., 2018. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143-1156.

 

Seress, G., Sándor, K., Evans, K.L., Liker, A., 2020. Food availability limits avian reproduction in the city: an experimental study on great tits Parus major. J. Anim. Ecol. 89, 1570-1580.

 

Seress, G., Sándor, K., Vincze, E., Pipoly, I., Bukor, B., Ágh, N., et al., 2021. Contrasting effects of the COVID-19 lockdown on urban birds' reproductive success in two cities. Sci. Rep. 11, 17649.

 

Sinkovics, C., Seress, G., Pipoly, I., Vincze, E., Liker, A., 2021. Great tits feed their nestlings with more but smaller prey items and fewer caterpillars in cities than in forests. Sci. Rep. 11, 24161.

 

Sinkovics, C., Seress, G., Pipoly, I., Vincze, E., Liker, A., 2023. Comparison of nestling diet between first and second broods of great tits Parus major in urban and forest habitats. Anim. Biodiv. Conserv. 46, 199-212.

 

Sol, D., Lapiedra, O., González-Lagos, C., 2013. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101-1112.

 

Stauss, M., Segelbacher, G., Tomiuk, J., Bachmann, L., 2005. Sex ratio of Parus major and P. caeruleus broods depends on parental condition and habitat quality. Oikos 109, 367-373.

 

Suh, A., Kriegs, J.O., Brosius, J., Schmitz, J., 2011. Retroposon insertions and the chronology of avian sex chromosome evolution. Mol. Biol. Evol. 28, 2993-2997.

 

Sumasgutner, P., Nemeth, E., Tebb, G., Krenn, H.W., Gamauf, A., 2014. Hard times in the city – attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front. Zool. 11, 48.

 

Swenson, J.E., 1986. Differential survival by sex in juvenile sage grouse and gray partridge. Ornis Scand. 17, 14.

 

Székely, T., Liker, A., Freckleton, R.P., Fichtel, C., Kappeler, P.M., 2014. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B Biol. Sci. 281, 20140342.

 

Tobler, M., Hasselquist, D., Smith, H.G., Sandell, M.I., 2010. Short- and long-term consequences of prenatal testosterone for immune function: an experimental study in the zebra finch. Behav. Ecol. Sociobiol. 64, 717-727.

 

Tschirren, B., Fitze, P.S., Richner, H., 2003. Sexual dimorphism in susceptibility to parasites and cell-mediated immunity in great tit nestlings. J. Anim. Ecol. 72, 839-845.

 

Vincze, E., Seress, G., Lagisz, M., Nakagawa, S., Dingemanse, N.J., Sprau, P., 2017. Does urbanization affect predation of bird nests? A meta-analysis. Front. Ecol. Evol. 26, e01475.

 

Von Engelhardt, N., Carere, C., Dijkstra, C., Groothuis, T.G.G., 2006. Sex-specific effects of yolk testosterone on survival, begging and growth of zebra finches. Proc. R. Soc. B Biol. Sci. 273, 65-70.

 

West, S.A., Sheldon, B.C., 2002. Constraints in the evolution of sex ratio adjustment. Science 295, 1685-1688.

 

Xirocostas, Z.A., Everingham, S.E., Moles, A.T., 2020. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Biol. Lett. 16, 20190867.

Avian Research
Article number: 100169
Cite this article:
Ágh N, Dalvári HA, Szabó K, et al. Hard life for sons in the nest? Sex-dependent offspring mortality in Great Tits in urban and forest areas. Avian Research, 2024, 15(1): 100169. https://doi.org/10.1016/j.avrs.2024.100169

159

Views

3

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 August 2023
Revised: 19 February 2024
Accepted: 22 February 2024
Published: 06 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return