AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Deterministic processes drive turnover-dominated beta diversity of breeding birds along the central Himalayan elevation gradient

Zhifeng DingaJianchao LiangaLe YangbCong WeibHuijian Hua( )Xingfeng Sic( )
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
Tibet Plateau Institute of Biology, Lhasa, 850001, China
Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
Show Author Information

Abstract

Beta diversity, the variation of community composition among sites, bridges alpha and gamma diversity and can reveal the mechanisms of community assembly through applying distance-decay models and/or partitioning beta diversity into turnover and nestedness components from functional and phylogenetic perspectives. Mountains as the most natural experiment system provide good opportunities for exploring beta diversity patterns and the underlying ecological processes. Here, we simultaneously consider distance-decay models and multiple dimensions of beta diversity to examine spatial variations of bird communities, and to evaluate the relative importance of niche-based and neutral community assembly mechanisms along a 3600-m elevational gradient in the central Himalayas, China. Our results showed that species turnover dominates taxonomic, functional, and phylogenetic beta diversity. We observed strongest evidence of spatial distance decays in taxonomic similarities of birds, followed by its phylogenetic and functional analogues. Turnover component was highest in taxonomic beta diversity, while nestedness component was highest in functional beta diversity. Further, all correlations of assemblage similarity with climatic distance were higher than that with spatial distances. Standardized values of overall taxonomic, functional, and phylogenetic beta diversity and their turnover components increase with increasing elevational distance, while the standardized values of taxonomic and phylogenetic nestedness decreased with increasing elevational distance. Our results highlighted the niche-based deterministic processes in shaping elevational bird diversity patterns that were determined by the relative roles of decreasing trend of environmental filtering and increasing trend of limiting similarity along elevation distances.

References

 

Araújo, M.B., Pearson, R.G., Rahbek, C., 2005. Equilibrium of species' distributions with climate. Ecography 28, 693–695.

 

Astorga, A., Oksanen, J., Luoto, M., Soininen, J., Virtanen, R., Muotka, T., 2012. Distance decay of similarity in freshwater communities: do macro-and microorganisms follow the same rules? Global Ecol. Biogeogr. 21, 365–375.

 

Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143.

 

Baselga, A., Gómez-Rodríguez, C., 2021. Assessing the equilibrium between assemblage composition and climate: a directional distance-decay approach. J. Anim. Ecol. 90, 1906–1918.

 

Baselga, A., Gómez-Rodríguez, C., Lobo, J.M., 2012. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS One 7, e32341.

 

Baselga, A., Orme, C.D.L., 2012. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812.

 

Bibby, C.J., Burgess, N.D., Hillis, D.A., Mustoe, S.H., 2000. Bird Census Techniques, second ed. Academic Press, London.

 

Bishop, T.R., Robertson, M.P., van Rensburg, B.J., Parr, C.L., 2015. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786.

 

Branco, C.C.Z., Bispo, P.C., Peres, C.K., Tonetto, A.F., Krupek, R.A., Barfield, M., et al., 2020. Partitioning multiple facets of beta diversity in a tropical stream macroalgal metacommunity. J. Biogeogr. 47, 1765–1780.

 

Carlos-Júnior, L.A., Spencer, M., Neves, D.M., Moulton, T.P., de Oliveira Pires, D., e Castro, C.B., et al., 2019. Rarity and beta diversity assessment as tools for guiding conservation strategies in marine tropical subtidal communities. Divers. Distrib. 25, 743–757.

 

Chase, J.M., Kraft, N.J.B., Smith, K.G., Vellend, M., Inouye, B.D., 2011. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, 1–11.

 

Condit, R., Pitman, N., Leigh Jr, E.G., Chave, J., Terborgh, J., Foster, R.B., et al., 2002. Beta-diversity in tropical forest trees. Science 295, 666–669.

 

da Silva, P.G., Lobo, J.M., Hensen, M.C., Vaz-de-Mello, F.Z., Hernández, M.I.M., 2018. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290.

 

Dehling, D.M., Fritz, S.A., Töpfer, T., Päckert, M., Estler, P., Böhning-Gaese, K., et al., 2014. Functional and phylogenetic diversity and assemblage structure of frugivorous birds along an elevational gradient in the tropical Andes. Ecography 37, 1047–1055.

 

Ding, Z., Feeley, K.J., Wang, Y., Pakeman, R.J., Ding, P., 2013. Patterns of bird functional diversity on land-bridge island fragments. J. Anim. Ecol. 82, 781–790.

 

Ding, Z., Hu, H., Cadotte, M.W., Liang, J., Hu, Y., Si, X., 2021. Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography 44, 1403–1417.

 

Ding, Z., Liang, J., Hu, Y., Zhou, Z., Sun, H., Liu, L., et al., 2019. Different responses of avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. Ecol. Evol. 9, 4116–4128.

 

Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.

 

Du, Y., Fan, L., Xu, Z., Wen, Z., Cai, T., Feijo, A., et al., 2021. A multi-faceted comparative perspective on elevational beta-diversity: the patterns and their causes. Proc. R. Soc. B 288, 20210343.

 

Feeley, K.J., Silman, M.R., 2011. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140.

 

Fontana, V., Guariento, E., Hilpold, A., Niedrist, G., Steinwandter, M., Spitale, D., et al., 2020. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 12516.

 

García‐Navas, V., Sattler, T., Schmid, H., Ozgul, A., 2020. Temporal homogenization of functional and beta diversity in bird communities of the Swiss Alps. Divers. Distrib. 26, 900–911.

 

García-Navas, V., Martínez‐Núñez, C., Tarifa, R., Molina-Pardo, J.L., Valera, F., Salido, T., et al., 2022. Partitioning beta diversity to untangle mechanisms underlying the assembly of bird communities in Mediterranean olive groves. Divers. Distrib. 28, 112–127.

 

Gaston, K.J., Davies, R.G., Orme, C.D.L., Olson, V.A., Thomas, G.H., Ding, T-S., et al., 2007. Spatial turnover in the global avifauna. Proc. R. Soc. B 274, 1567–1574.

 

Ge, Y., Meng, X., Heino, J., García-Girón, J., Liu, Y., Li, Z., et al., 2021. Stochasticity overrides deterministic processes in structuring macroinvertebrate communities in a plateau aquatic system. Ecosphere 12, e03675.

 

Gómez‐Rodríguez, C., Baselga, A., 2018. Variation among European beetle taxa in patterns of distance decay of similarity suggests a major role of dispersal processes. Ecography 41, 1825–1834.

 

González-Trujillo, J.D., Pedraza-Garzón, E., Donato-Rondon, J.C., Sabater, S., 2020. Ecoregional characteristics drive the distribution patterns of neotropical stream diatoms. J. Phycol. 56, 1053–1065.

 

Graco-Roza, C., Aarnio, S., Abrego, N., Acosta, A.T.R., Alahuhta, J., Altman, J., et al., 2022. Distance decay 2.0-a global synthesis of taxonomic and functional turnover in ecological communities. Global Ecol. Biogeogr. 31, 1399–1421.

 

Graham, C.H., Fine, P.V.A., 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265–1277.

 

He, X., DuBay, S., Zhangshang, M., Cheng, Y., Liu, Z., Li, D., et al., 2022. Seasonal elevational patterns and the underlying mechanisms of avian diversity and community structure on the eastern slope of Mt. Gongga. Divers. Distrib. 28, 2459–2474.

 

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O., 2012. The global diversity of birds in space and time. Nature 491, 444–448.

 

Jiang, X., Pan, B., Jiang, W., Hou, Y., Yang, H., Zhu, P., et al., 2021. The role of environmental conditions, climatic factors and spatial processes in driving multiple facets of stream macroinvertebrate beta diversity in a climatically heterogeneous mountain region. Ecol. Indicat. 124, 107407.

 

Jonsson, B.G., 2001. A null model for randomization tests of nestedness in species assemblages. Oecologia 127, 309–313.

 

Körner, C., 2007. The use of 'altitude'in ecological research. Trends Ecol. Evol. 22, 569–574.

 

Kusumoto, B., Kubota, Y., Baselga, A., Gómez-Rodríguez, C., Matthews, T.J., Murphy, D.J., et al., 2021. Community dissimilarity of angiosperm trees reveals deep-time diversification across tropical and temperate forests. J. Veg. Sci. 32, e13017.

 

Leprieur, F., Albouy, C., De Bortoli, J., Cowman, P.F., Bellwood, D.R., Mouillot, D., 2012. Quantifying phylogenetic beta diversity: distinguishing between 'True' turnover of lineages and phylogenetic diversity gradients. PLoS One 7, e42760.

 

Liang, D., Pan, X., Luo, X., Wenda, C., Zhao, Y., Hu, Y., et al., 2021. Seasonal variation in community composition and distributional ranges of birds along a subtropical elevation gradient in China. Divers. Distrib. 27, 2527–2541.

 

Martínez-Santalla, S., Martín-Devasa, R., Gómez-Rodríguez, C., Crujeiras, R.M., Baselga, A., 2022. Assessing the nonlinear decay of community similarity: permutation and site-block resampling significance tests. J. Biogeogr. 49, 968–978.

 

McCain, C.M., 2009. Global analysis of bird elevational diversity. Global Ecol. Biogeogr. 18, 346–360.

 

Miklós, I., Podani, J., 2004. Randomization of presence-absence matrices: comments and new algorithms. Ecology 85, 86–92.

 

Millar, R.B., Anderson, M.J., Tolimieri, N., 2011. Much ado about nothings: using zero similarity points in distance-decay curves. Ecology 92, 1717–1722.

 

Mori, A.S., Isbell, F., Seidl, R., 2018. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564.

 

Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D., et al., 2008. A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett. 11, 904–917.

 

Nekola, J.C., White, P.S., 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878.

 

Nekola, J.C., McGill, B.J., 2014. Scale dependency in the functional form of the distance decay relationship. Ecography 37, 309–320.

 

Perez Rocha, M., Bini, L.M., Domisch, S., Tolonen, K.T., Jyrkänkallio-Mikkola, J., Soininen, J., et al., 2018. Local environment and space drive multiple facets of stream macroinvertebrate beta diversity. J. Biogeogr. 45, 2744–2754.

 

Quintero, I., Jetz, W., 2018. Global elevational diversity and diversification of birds. Nature 555, 246–250.

 

Rahbek, C., Borregaard, M.K., Colwell, R.K., Dalsgaard, B., Holt, B.G., Morueta-Holme, N., et al., 2019. Humboldt's enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113.

 

Ricotta, C., Laroche, F., Szeidl, L., Pavoine, S., 2020. From alpha to beta functional and phylogenetic redundancy. Methods Ecol. Evol. 11, 487–493.

 

Saito, V.S., Soininen, J., Fonseca-Gessner, A.A., Siqueira, T., 2015. Dispersal traits drive the phylogenetic distance decay of similarity in Neotropical stream metacommunities. J. Biogeogr. 42, 2101–2111.

 

Segre, H., Ron, R., De Malach, N., Henkin, Z., Mandel, M., Kadmon, R., 2014. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett. 17, 1400–1408.

 

Si, X., Baselga, A., Leprieur, F., Song, X., Ding, P., 2016. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J. Anim. Ecol. 85, 409–418.

 

Si, X., Baselga, A., Ding, P., 2015. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS One 10, e0127692.

 

Si, X., Cadotte, M.W., Zhao, Y., Zhou, H., Zeng Di., Li, J., et al., 2018. The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology 99, 2103–2112.

 

Siefert, A., Ravenscroft, C., Weiser, M.D., Swenson, N.G., 2013. Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Global Ecol. Biogeogr. 22, 682–691.

 

Socolar, J.B., Gilroy, J.J., Kunin, W.E., Edwards, D.P., 2016. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80.

 

Soininen, J., Heino, J., Wang, J., 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecol. Biogeogr. 27, 96–109.

 

Soininen, J., Jamoneau, A., Rosebery, J., Passy, S.I., 2016. Global patterns and drivers of species and trait composition in diatoms. Global Ecol. Biogeogr. 25, 940–950.

 

Soininen, J., Lennon, J.J., Hillebrand, H., 2007. A multivariate analysis of beta diversity across organisms and environments. Ecology 88, 2830–2838.

 

Specht, H.M., Reich, H.T., Iannarilli, F., Edwards, M.R., Stapleton, S.P., Weegman, M.D., et al., 2017. Occupancy surveys with conditional replicates: an alternative sampling design for rare species. Methods Ecol. Evol. 8, 1725–1734.

 

Sreekar, R., Koh, L.P., Mammides, C., Corlett, R.T., Dayananda, S., Goodale, U.M., et al., 2020. Drivers of bird beta diversity in the Western Ghats-Sri Lanka biodiversity hotspot are scale dependent: roles of land use, climate, and distance. Oecologia 193, 801–809.

 

Steinbauer, M.J., Dolos, K., Reineking, B., Beierkuhnlein, C., 2012. Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecol. Biogeogr. 21, 1203–1212.

 

Svenning, J.C., Fløjgaard, C., Baselga, A., 2011. Climate, history and neutrality as drivers of mammal beta diversity in Europe: insights from multiscale deconstruction. J. Anim. Ecol. 80, 393–402.

 

Swenson, N.G., Anglada-Cordero, P., Barone, J.A., 2011. Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc. R. Soc. B 278, 877–884.

 

Tello, J.S., Myers, J.A., Macía, M.J., Fuentes, A.F., Cayola, L., Arellano, G., et al., 2015. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS One 10, e0121458.

 

Tolmos, M.L., Kreft, H., Ramirez, J., Ospina, R., Craven, D., 2022. Water and energy availability mediate biodiversity patterns along an elevational gradient in the tropical Andes. J. Biogeogr. 49, 712–726.

 

Tuomisto, H., Ruokolainen, K., Yli-Halla, M., 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244.

 

Vellend, M., Srivastava, D.S., Anderson, K.M., Brown, C.D., Jankowski, J.E., Kleynhans, E.J., et al., 2014 Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430.

 

Villéger, S., Grenouillet, G., Brosse, S., 2013 Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecol. Biogeogr. 22, 671–681.

 

Wang, J., Legendre, P., Soininen, J., Yeh, C., Graham, E., Stegen, J., et al., 2020. Temperature drives local contributions to beta diversity in mountain streams: stochastic and deterministic processes. Global Ecol. Biogeogr. 29, 420–432.

 

Wang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., Shen, J., 2012. Patterns of elevational beta diversity in micro- and macroorganisms. Global Ecol. Biogeogr. 21, 743–750.

 

Wang, X., Zhong, M., Yang, S., Jiang, J., Hu, J., 2022. Multiple β-diversity patterns and the underlying mechanisms across amphibian communities along a subtropical elevational gradient. Divers. Distrib. 28, 2489–2502.

 

Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M., 2002 Phylogenies and community ecology. Annu. Rev. Ecol. Systemat. 33, 475–505.

 

Weinstein, B.G., Tinoco, B., Parra, J.L., Brown, L.M., McGuire, J.A., Stiles, F.G., et al., 2014. Taxonomic, phylogenetic, and trait beta diversity in South American hummingbirds. Am. Nat. 184, 211–224.

 

Wu, L., Si, X., Didham, R.K., Ge, D., Ding, P., 2017. Dispersal modality determines the relative partitioning of beta diversity in spider assemblages on subtropical land-bridge islands. J. Biogeogr. 44, 2121–2131.

 

Wu, Y., Colwell, R.K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., et al., 2013. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323.

 

Zellweger, F., Roth, T., Bugmann, H., Bollmann, K., 2017. Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecol. Biogeogr. 26, 898–906.

 

Zeng, C., Li, W., Ding, P., Peng, Y., Wu, L., Si, X., 2022. A landscape-level analysis of bird taxonomic, functional and phylogenetic β-diversity in habitat island systems. J. Biogeogr. 49, 1162–1175.

 

Zhao, Y., Sanders, N.J., Liu, J., Jin, T., Zhou, H., Lu, R., et al., 2021. β diversity among ant communities on fragmented habitat islands: the roles of species trait, phylogeny and abundance. Ecography 44, 1568–1578.

 

Zheng, Z.X., Li, D.H., Wang, Z.X., Wang, Z.Y., Jiang, Z.H., Lu, T.C., 1983. The Avifauna of Xizang. Science Press, Beijing.

Avian Research
Article number: 100170
Cite this article:
Ding Z, Liang J, Yang L, et al. Deterministic processes drive turnover-dominated beta diversity of breeding birds along the central Himalayan elevation gradient. Avian Research, 2024, 15(2): 100170. https://doi.org/10.1016/j.avrs.2024.100170

102

Views

3

Downloads

2

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 03 June 2023
Revised: 26 February 2024
Accepted: 27 February 2024
Published: 11 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return