AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Weather influenced nestling growth of an insectivorous but not a granivorous grassland passerine in Argentina

Martín Alejandro Colombo( )Adrián JaureguiLuciano N. Segura
Laboratorio de Ecología de Aves. Institute "Dr. Raúl A. Ringuelet" (ILPLA) ‐ UNLP/CONICET, Boulevard 120 1437, La Plata, B1900, Buenos Aires, Argentina
Show Author Information

Abstract

Nestling growth of birds can be affected by weather fluctuations. In general, it is expected that higher temperatures favor growth by improving food availability and nestling metabolism, while rain hinders it by reducing foraging efficiency. However, most of these patterns have been described in insectivorous cavity-nesting birds in temperate forests. We tested these predictions in two neotropical grassland ground-nesting birds with contrasting nestling diets and therefore potentially different responses to weather. We measured nestlings of the Hellmayr's Pipit (Anthus hellmayri, an insectivorous passerine) and the Grassland Yellow-Finch (Sicalis luteola, which feeds its nestlings exclusively with seeds) during three breeding seasons (2017–2020) in central-eastern Argentina. We took measurements of tarsus and body mass, modeled growth curves using nonlinear mixed-effects models, and evaluated the effects of minimum daily temperature and precipitation during the growth period and the 30 days prior to hatching. For pipits (60 nestlings from 21 nests), minimum temperatures during the growth period were positively associated with tarsus and body mass asymptotes. Also, there was a positive association between precipitation during the pre-hatching period and tarsus asymptote. Conversely, none of the weather variables analyzed had significant effects on nestling growth of finches (131 nestlings from 35 nests). Dietary contrast between species may explain the different results. Arthropod activity and abundance can be affected by weather variations within the span of a breeding season, whereas seeds may depend on conditions from previous years, making the effects harder to detect. Fledglings with reduced asymptotic size can have reduced chances of survival. Hence, pipit populations could be impacted if they experience cold and dry conditions during their breeding season, which is of major relevance in the current context of climate change.

References

 

Andrew, S.C., Hurley, L.L., Mariette, M.M., Griffith, S.C., 2017. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164. https://doi.org/10.1111/jeb.13181.

 

Arlettaz, R., Schaad, M., Reichlin, T.S., Schaub, M., 2010. Impact of weather and climate variation on Hoopoe reproductive ecology and population growth. J. Ornithol. 151, 889–899. https://doi.org/10.1007/s10336–010–0527–7.

 

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16. https://doi.org/10.1046/j.1365–2486.2002.00451.x.

 

Barnett, K.L., Facey, S.L., 2016. Grasslands, invertebrates, and precipitation: a review of the effects of climate change. Front. Plant Sci. 7, 1196. https://doi.org/10.3389/fpls.2016.01196.

 

Belitz, M.W., Barve, V., Doby, J.R., Hantak, M.M., Larsen, E.A., Li, D., et al., 2021. Climate drivers of adult insect activity are conditioned by life history traits. Ecol. Lett. 24, 2687–2699. https://doi.org/10.1111/ele.13889.

 

Blendinger, P.G., Ojeda, R.A., 2001. Seed supply as a limiting factor for granivorous bird assemblages in the Monte Desert, Argentina. Austral Ecol. 26, 413–422. https://doi.org/10.1046/j.1442–9993.2001.01125.x.

 

Bradbury, R.B., Wilson, J.D., Moorcroft, D., Morris, A.J., Perkins, A.J., 2003. Habitat and weather are weak correlates of nestling condition and growth rates of four UK farmland passerines. Ibis 145, 295–306. https://doi.org/10.1046/j.1474–919X.2003.00142.x.

 

Briers, R.A., Cariss, H.M., Gee, J.H.R., 2003. Flight activity of adult stoneflies in relation to weather. Ecol. Entomol. 28, 31–40. https://doi.org/10.1046/j.1365–2311.2003.00480.x.

 

Cai, W., McPhaden, M.J., Grimm, A.M., Rodrigues, R.R., Taschetto, A.S., Garreaud, R.D., et al., 2020. Climate impacts of the el niño–southern oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231. https://doi.org/10.1038/s43017–020–0040–3.

 

Charmantier, A., McCleery, R.H., Cole, L.R., Perrins, C., Kruuk, L.E.B., Sheldon, B.C., 2008. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174.

 

Cohen, J.M., Lajeunesse, M.J., Rohr, J.R., 2018. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228. https://doi.org/10.1038/s41558–018–0067–3.

 

Colombo, M.A., Segura, L.N., 2023. Nest-site features influence nest survival of the Hellmayr's Pipit in extensive cattle-grazed grasslands. J. Wildl. Manag. 87, e22396. https://doi.org/10.1002/jwmg.22396.

 

Colombo, M.A., Jauregui, A., Gonzalez, E., Segura, L.N., 2021. Nesting biology and nest survival of the Grassland Sparrow (Ammodramus humeralis) in grazed grasslands of central-eastern Argentina. Neotrop. Biodivers. 7, 67–74. https://doi.org/10.1080/23766808.2021.1888625.

 

Cunningham, S.J., Martin, R.O., Hojem, C.L., Hockey, P.A.R., 2013. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of Common Fiscals. PLoS One 8, e74613. https://doi.org/10.1371/journal.pone.0074613.

 

Cox, A.R., Robertson, R.J., Lendvai, Á. Z., Everitt, K., Bonier, F., 2019. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B 286, 20190018. https://doi.org/10.1098/rspb.2019.0018.

 

Cox, G.W., 2010. Bird Migration and Global Change. Island Press, Washington, DC.

 

Crawley, M.J., 2015. Statistics: An Introduction using R, Second edition. ed. John Wiley & Sons, Chichester.

 

Crowley, G., Garnett, S., 1999. Seeds of the annual grasses Schizachyrium spp. as a food resource for tropical granivorous birds. Aust. J. Ecol. 24, 208–220. https://doi.org/10.1046/j.1442–9993.1999.00964.x.

 

Dawson, R.D., Lawrie, C.C., O'Brien, E.L., 2005. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507. https://doi.org/10.1007/s00442–005–0075–7.

 

Dudney, J., Hallett, L.M., Larios, L., Farrer, E.C., Spotswood, E.N., Stein, C., et al., 2017. Lagging behind: have we overlooked previous-year rainfall effects in annual grasslands? J. Ecol. 105, 484–495. https://doi.org/10.1111/1365–2745.12671.

 

Facey, R.J., Vafidis, J.O., Smith, J.A., Vaughan, I.P., Thomas, R.J., 2020. Contrasting sensitivity of nestling and fledgling Barn Swallow Hirundo rustica body mass to local weather conditions. Ibis 162, 1163–1174. https://doi.org/10.1111/ibi.12824.

 

Frampton, G.K., Van den Brink, P.J., Gould, P.J.L., 2000. Effects of spring precipitation on a temperate arable collembolan community analysed using Principal Response Curves. Appl. Soil Ecol. 14, 231–248. https://doi.org/10.1016/S0929–1393(00)00051–2.

 

Freitas, M.S., Francisco, M.R., 2012. Nesting behavior of the Grassland Yellow-Finch (Sicalis luteola) in southeastern Brazil. Ornitol. Neotrop. 23, 341–348.

 

Frick, W.F., Stepanian, P.M., Kelly, J.F., Howard, K.W., Kuster, C.M., Kunz, T.H., et al., 2012. Climate and weather impact timing of emergence of bats. PLoS One 7, e42737. https://doi.org/10.1371/journal.pone.0042737.

 

Garrett, D.R., Pelletier, F., Garant, D., Bélisle, M., 2022. Interacting effects of cold snaps, rain, and agriculture on the fledging success of a declining aerial insectivore. Ecol. Appl. 32, e2645. https://doi.org/10.1002/eap.2645.

 
IPCC, 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. https://doi.org/10.59327/IPCC/AR6-9789291691647.
 

Jahn, A.E., Levey, D.J., Mamani, A.M., Saldias, M., Alcoba, A., Ledezma, M.J., et al., 2010. Seasonal differences in rainfall, food availability, and the foraging behavior of Tropical Kingbirds in the southern Amazon Basin. J. Field Ornithol. 81, 340–348. https://doi.org/10.1111/j.1557–9263.2010.00290.x.

 

Kosicki, J.Z., Indykiewicz, P., 2011. Effects of breeding date and weather on nestling development in White Storks Ciconia ciconia. Bird Study 58, 178–185. https://doi.org/10.1080/00063657.2011.554531.

 

Larson, E.R., Eastwood, J.R., Buchanan, K.L., Bennett, A.T.D., Berg, M.L., 2015. How does nest-box temperature affect nestling growth rate and breeding success in a parrot? Emu 115, 247–255.

 

Lopes, A., Demarchi, L.O., Piedade, M.T.F., Schöngart, J., Wittmann, F., Munhoz, C.B.R., et al., 2023. Predicting the range expansion of invasive alien grasses under climate change in the Neotropics. Perspect. Ecol. Conserv. 21, 128–135. https://doi.org/10.1016/j.pecon.2023.02.005.

 

Mainwaring, M.C., Hartley, I.R., 2016. Local weather conditions have complex effects on the growth of Blue Tit nestlings. J. Therm. Biol. 60, 12–19. https://doi.org/10.1016/j.jtherbio.2016.05.005.

 

Marques-Santos, F., Dingemanse, N.J., 2020. Weather effects on nestling survival of Great Tits vary according to the developmental stage. J. Avian Biol. 51, e02421. https://doi.org/10.1111/jav.02421.

 

Martin, T.E., Boyce, A.J., Fierro-Calderón, K., Mitchell, A.E., Armstad, C.E., Mouton, J.C., et al., 2017. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct. Ecol. 31, 1231–1240. https://doi.org/10.1111/1365–2435.12819.

 
Matteucci, S., 2012. Ecorregion Pampa. In: Morello, J., Matteucci, S., Rodriguez, A., Silva, M. (Eds. ), Ecorregiones y Complejos Ecosistemicos Argentinos. Orientacion Grafica Editora, Buenos Aires, pp. 391–446.
 

Murphy, M.T., 1985. Nestling Eastern Kingbird growth: effects of initial size and ambient temperature. Ecology 66, 162–170. https://doi.org/10.2307/1941316.

 

Müller, G.V., Lovino, M.A., Sgroi, L.C., 2021. Observed and projected changes in temperature and precipitation in the core crop region of the humid Pampa, Argentina. Climate 9, 40. https://doi.org/10.3390/cli9030040.

 
Naumann, G., Podestá, G., Marengo, J.A., Luterbacher, J., Bavera, D., Arias Munoz, C., et al., 2021. Extreme and Long-term Drought in the La Plata Basin: Event Evolution and Impact Assessment until September 2022: A Joint Report from EC JRC, CEMADEN, SISSA and WMO. Publications Office of the European Union, Luxemburg.
 
Norambuena, H.V., Rivas Fuenzalida, F., Tyler, S., de Juana, E., 2022. Hellmayr's Pipit (Anthus hellmayri), version 2.0. In: Schulenberg, T.S., Billerman, S.M. (Eds. ), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.helpip1.02.
 

Öberg, M., Arlt, D., Pärt, T., Laugen, A.T., Eggers, S., Low, M., 2015. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecol. Evol. 5, 345–356. https://doi.org/10.1002/ece3.1345.

 

Pérez, J.H., Krause, J.S., Chmura, H.E., Bowman, S., McGuigan, M., Asmus, A.L., et al., 2016. Nestling growth rates in relation to food abundance and weather in the Arctic. Auk 133, 261–272. https://doi.org/10.1642/AUK-15–111.1.

 

Pinheiro, F., Diniz, I.R., Coelho, D., Bandeira, M.P.S., 2002. Seasonal pattern of insect abundance in the Brazilian Cerrado. Austral Ecol. 27, 132–136. https://doi.org/10.1046/j.1442–9993.2002.01165.x.

 

Pinheiro, J., Bates, D., 2022. nlme: linear and nonlinear mixed effects models. R package version 3.1–162. https://cran.r-project.org/package=nlme.

 

Poulin, B., Lefebvre, G., McNeil, R., 1992. Tropical avian phenology in relation to abundance and exploitation of food resources. Ecology 73, 2295–2309. https://doi.org/10.2307/1941476.

 
R Core Team, 2022. R: A language and environment for statistical computing, version 4.1.2. Vienna, Austria. https://www.R-project.org/.
 
Rising, J.D., Jaramillo, A., de Juana, E., 2020. Grassland Yellow-Finch (Sicalis luteola), version 1.0. Birds World. In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A., de Juana, E. (Eds. ), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.gryfin1.01.
 

Rodríguez, S., Barba, E., 2016. Nestling growth is impaired by heat stress: an experimental study in a Mediterranean Great Tit population. Zool. Stud. 55, 40. https://doi.org/10.6620/ZS.2016.55–40.

 
Roitman, G., Preliasco, P., 2012. Guía de Reconocimiento de Herbáceas de la Pampa Deprimida. In: Edición, 1a (Ed. ), Fundación Vida Silvestre Argentina, Buenos Aires.
 

Rypstra, A.L., 1986. Web spiders in temperate and tropical forests: relative abundance and environmental correlates. Am. Midl. Nat. 115, 42–51. https://doi.org/10.2307/2425835.

 

Salvador, S.A., Salvador, L.A., 1986. Nota sobre la reproducción del misto (Sicalis luteola) en Córdoba, Argentina. Hornero 12, 274–280.

 

Sauve, D., Friesen, V.L., Charmantier, A., 2021. The effects of weather on avian growth and implications for adaptation to climate change. Front. Ecol. Evol. 9, 569741. https://doi.org/10.3389/fevo.2021.569741.

 

Supriya, K., Moreau, C.S., Sam, K., Price, T.D., 2019. Analysis of tropical and temperate elevational gradients in arthropod abundance. Front. Biogeogr. 11, e43104. https://doi.org/10.21425/F5FBG43104.

 
Svagelj, W.S., 2019. Brood reduction in neotropical birds: mechanisms, patterns, and insights from studies in the Imperial Shag (Phalacrocorax atriceps). In: Reboreda, J.C., Fiorini, V.D., Tuero, D.T. (Eds. ), Behavioral Ecology of Neotropical Birds. Springer International Publishing, Cham, pp. 87–102. https://doi.org/10.1007/978–3-030–14280–3_5.
 

Svagelj, W.S., Quintana, F., 2017. Sex-specific growth in the Imperial Cormorant (Phalacrocorax atriceps): when does dimorphism arise? Waterbirds 40, 154–161. https://doi.org/10.1675/063.040.0207.

 

Tjørve, E., Tjørve, K.M.C., 2010. A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms. J. Theor. Biol. 267, 417–425. https://doi.org/10.1016/j.jtbi.2010.09.008.

 

Tuero, D.T., Jahn, A.E., Husak, M.S., Roeder, D.V., Masson, D.A., Pucheta, F.M., et al., 2018. Ecological determinants of Tyrannus flycatcher nestling growth at north- and south-temperate latitudes. Auk 135, 439–448. https://doi.org/10.1642/AUK-17–62.1.

 

Węgrzyn, E., 2013. Resource allocation between growth and endothermy allows rapid nestling development at low feeding rates in a species under high nest predation. J. Avian Biol. 44, 383–389. https://doi.org/10.1111/j.1600–048X.2013.05846.x.

 

Wheelwright, N.T., Freeman-Gallant, C.R., Mauck, R.A., 2022. Nestling Savannah Sparrows and Tree Swallows differ in their sensitivity to weather. Ornithology 139, ukac032. https://doi.org/10.1093/ornithology/ukac032.

 

Whitehouse, M.J., Harrison, N.M., Mackenzie, J., Hinsley, S.A., 2013. Preferred habitat of breeding birds may be compromised by climate change: unexpected effects of an exceptionally cold, wet spring. PLoS One 8, e75536. https://doi.org/10.1371/journal.pone.0075536.

 

Williams, C.B., 1961. Studies in the effect of weather conditions on the activity and abundance of insect populations. Philos. T. Roy. Soc. B 244, 331–378. https://doi.org/10.1098/rstb.1961.0011.

Avian Research
Article number: 100173
Cite this article:
Colombo MA, Jauregui A, Segura LN. Weather influenced nestling growth of an insectivorous but not a granivorous grassland passerine in Argentina. Avian Research, 2024, 15(2): 100173. https://doi.org/10.1016/j.avrs.2024.100173

121

Views

3

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 January 2024
Revised: 01 April 2024
Accepted: 02 April 2024
Published: 09 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return