AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Proximity to corridors benefits bird communities in vegetated interrow vineyards in Mendoza, Argentina

Andrea Paula Goijmana,1( )Agustín Zarcob,1
EEA La Consulta, Instituto Nacional de Tecnología Agropecuaria (INTA), San Carlos, Mendoza, Argentina
Instituto Argentino de Investigación en las Zonas Áridas (IADIZA) CONICET, 5500, Mendoza, Argentina

1 These authors contributed equally.

Show Author Information

Abstract

Management under ecological schemes and increasing habitat heterogeneity, are essential for enhancing biodiversity in vineyards. Birds provide several contributions to agriculture, for example pest control, recreation and enhancing human mental health, and have intrinsic value. Birds are also ideal model organisms because they are easy to survey, and species respond differently to agricultural land use at different scales. Vegetated borders of crops are key for many species of birds, and distance to the border have been found to be an important factor in vineyard-dominated agroecosystems. We evaluate if there are differences in the bird assemblage, between the interior compared to borders within vineyards, using a hierarchical community occupancy model. We hypothesized that occupancy of birds is greater in environments with greater heterogeneity, which in this study was considered to be contributed by the proximity to vegetated corridors. We expected that vineyard borders close to corridors will have higher bird occupancy than the center of the vineyard. The research was conducted in three vineyards with biodiversity-friendly management practices, in Gualtallary, Mendoza, Argentina. Bird surveys were conducted over three breeding seasons from 2018 to 2020. Occupancy and richness of the bird community was more closely associated with the borders adjacent to the corridors than with the interior of the vineyards, as we initially predicted, although the assemblage of birds did not differ much. More than 75% of the registered species consume exclusively or partially invertebrates. Biodiversity-friendly management and ecological schemes, together with vegetated corridors provide multiple benefits for biodiversity conservation. These approaches not only minimize the use of agrochemicals but also prioritize soil cover with spontaneous vegetation, which supports a diverse community of insectivorous bird species, potentially contributing to pest control.

References

 
Arbizu, P.M., 2017. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis. https://github.com/pmartinezarbizu/pairwiseAdonis.
 

Assandri, G., Bogliani, G., Pedrini, P., Brambilla, M., 2017. Assessing common birds' ecological requirements to address nature conservation in permanent crops: Lessons from Italian vineyards. J. Environ. Manage. 191, 145–154. https://doi.org/10.1016/j.jenvman.2016.12.071.

 

Assandri, G., Bogliani, G., Pedrini, P., Brambilla, M., 2016. Diversity in the monotony? Habitat traits and management practices shape avian communities in intensive vineyards. Agric. Ecosyst. Environ. 223, 250–260. https://doi.org/10.1016/j.agee.2016.03.014.

 

Barbaro, L., Assandri, G., Brambilla, M., Castagneyrol, B., Froidevaux, J., Giffard, B., et al., 2021. Organic management and landscape heterogeneity combine to sustain multifunctional bird communities in European vineyards. J. Appl. Ecol. 58, 1261–1271. https://doi.org/10.1111/1365–2664.13885.

 

Barbaro, L., Rusch, A., Muiruri, E.W., Gravellier, B., Thiery, D., Castagneyrol, B., 2017. Avian pest control in vineyards is driven by interactions between bird functional diversity and landscape heterogeneity. J. Appl. Ecol. 54, 500–508. https://doi.org/10.1111/1365–2664.12740.

 

Baselga, A., Orme, D., Villeger, S., De Bortoli, J., Leprieur, F., Logez, M., et al., 2023. betapart: Partitioning Beta diversity into turnover and nestedness components. R package version 1 (6). https://CRAN.R-project.org/package=betapart.

 

Batáry, P., Báldi, A., Kleijn, D., Tscharntke, T., 2011. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc. R. Soc. B 278, 1894–1902. https://doi.org/10.1098/rspb.2010.1923.

 

Beaumelle, L., Giffard, B., Tolle, P., Winter, S., Entling, M.H., Benítez, E., et al., 2023. Biodiversity conservation, ecosystem services and organic viticulture: a glass half-full. Agric. Ecosyst. Environ. 351, 108474. https://doi.org/10.1016/j.agee.2023.108474.

 

Belkhiri, A., Sadki, M., Maliki, A., Moubchir, T., Bendaoud, A., Chahdi Ouazzani, K., et al., 2023. Effect of season, habitat type and anthropogenic pressure on the bird diversity in the vineyards agroecosystems in the region of Fes-Meknes. Afr. J. Ecol. 61, 289–297. https://doi.org/10.1111/aje.13112.

 

Bennett, E.M., Peterson, G.D., Gordon, L.J., 2009. Understanding relationships among multiple ecosystem services: relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404. https://doi.org/10.1111/j.1461–0248.2009.01387.x.

 

Bernardos, J.N., Farrell, M., 2012. Evaluación de daño por la paloma torcaza (Zenaida auriculata) en girasol y pérdida de cosecha en la provincia de La Pampa campaña 2011–2012. INTA EEA Anguil, Ing. Agr. Guillermo Covas.

 

Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238. https://doi.org/10.1016/j.tree.2012.10.012.

 

Bosco, L., Cushman, S.A., Wan, H.Y., Zeller, K.A., Arlettaz, R., Jacot, A., 2021. Fragmentation effects on woodlark habitat selection depend on habitat amount and spatial scale. Anim. Conserv. 24, 84–94.

 

Brambilla, M., Gatti, F., 2022. No more silent (and uncoloured) springs in vineyards? Experimental evidence for positive impact of alternate inter-row management on birds and butterflies. J. Appl. Ecol. 59, 2166–2178. https://doi.org/10.1111/1365–2664.14229.

 

Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S., 2010. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv. 143, 1521–1528.

 

Buehler, R., Bosco, L., Arlettaz, R., Jacot, A., 2017. Nest site preferences of the Woodlark (Lullula arborea) and its association with artificial nest predation. Acta Oecol. 78, 41–46. https://doi.org/10.1016/j.actao.2016.12.004.

 

Calamari, N.C., Canavelli, S.B., Cerezo, A., Dardanelli, S., Bernardos, J.N., Zaccagnini, M.E., 2018a. Variations in pest bird density in Argentinean agroecosystems in relation to land use and/or cover, vegetation productivity and climate. Wildl. Res. 45, 668. https://doi.org/10.1071/WR17167.

 

Calamari, N.C., Vilella, F.J., Sica, Y.V., Mercuri, P.A., 2018b. Patch and landscape responses of bird abundance to fragmentation in agroecosystems of east-central Argentina. Avian Conserv. Ecol. 13, 3. https://doi.org/10.5751/ACE-01222–130203.

 

Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., et al., 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121. https://doi.org/10.1126/sciadv.aax0121.

 

de la Peña, M. R, 2011. Observaciones de Campo en la Alimentación de las Aves. Rev. Conserv Biol. 13, 1–88.

 

Di Giacomo, A.S., López de Casenave, J., 2010. Use and importance of crop and field-margin habitats for birds in a Neotropical agricultural ecosystem. Condor 112, 283–293. https://doi.org/10.1525/cond.2010.090039.

 

Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R.T., Molnár, Z., et al., 2018. Assessing nature's contributions to people. Science 359, 270–272. https://doi.org/10.1126/science.aap8826.

 

Dorazio, R.M., Royle, J.A., 2005. Estimating size and composition of biological communities by modeling the occurrence of species. J. Am. Stat. Assoc. 100, 389–398.

 

Döring, J., Collins, C., Frisch, M., Kauer, R., 2019. Organic and biodynamic viticulture affect biodiversity and properties of vine and wine: a systematic quantitative review. Am. J. Enol. Vitic. 70, 221–242. https://doi.org/10.5344/ajev.2019.18047.

 

Duarte, J., Farfán, M.A., Fa, J.E., Vargas, J.M., 2014. Soil conservation techniques in vineyards increase passerine diversity and crop use by insectivorous birds. Bird Study 61, 193–203. https://doi.org/10.1080/00063657.2014.901294.

 

Garibaldi, L.A., Oddi, F.J., Miguez, F.E., Bartomeus, I., Orr, M.C., Jobbágy, E.G., et al., 2021. Working landscapes need at least 20% native habitat. Conserv. Lett. 14, e12773. https://doi.org/10.1111/conl.12773.

 

Gavier-Pizarro, G.I., Calamari, N.C., Thompson, J.J., Canavelli, S.B., Solari, L.M., Decarre, J., et al., 2012. Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric. Ecosyst. Environ. 154, 44–55. https://doi.org/10.1016/j.agee.2011.08.013.

 

Gelman, A., Rubin, D.B., 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472.

 

Goijman, A.P., Conroy, M.J., Bernardos, J.N., Zaccagnini, M.E., 2015. Multi-season regional analysis of multi-species occupancy: implications for bird conservation in agricultural lands in East-Central Argentina. PLoS One 10, e0130874. https://doi.org/10.1371/journal.pone.0130874.

 

Goijman, A.P., Conroy, M.J., Varni, V.D., Thompson, J.J., Zaccagnini, M.E., 2020. Occupancy of avian foraging guilds in soybean fields and borders in Entre Ríos, Argentina: responses to vegetation structure and prey resources. Avian Res. 11, 48. https://doi.org/10.1186/s40657–020–00235–4.

 

Goijman, A.P., Zaccagnini, M.E., 2008. The effects of habitat heterogeneity on avian density and richness in soybean fields in Entre Ríos, Argentina. Hornero 23, 67–76.

 
INV, 2023. Informe anual de superficie 2022. Instituto Nacional de Vitivinicultura, Mendoza. https://www.argentina.gob.ar/sites/default/files/2018/10/informe_anual_de_superficie_2022.pdf (Accessed 08/11/2023).
 
IPBES, 2019. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn, Germany.
 

Katayama, N., Bouam, I., Koshida, C., Baba, Y.G., 2019. Biodiversity and yield under different land-use types in orchard/vineyard landscapes: a meta-analysis. Biol. Conserv. 229, 125–133. https://doi.org/10.1016/j.biocon.2018.11.020.

 

Kellner, K., 2015. jagsUI: a wrapper around rjags to streamline JAGS analyses. R Package Version 1.

 

Kéry, M., Royle, J.A., 2016. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Volume 2 : Dynamic and Advanced Models. Academic Press, Amsterdam.

 

Lauro, C., Vich, A.I., Moreiras, S.M., 2018. Regional flood frequency analysis in the central-western river basins of Argentina. River Res. Appl. 34, 721–733.

 

Lopez de Casenave, J., Cueto, V.R., Marone, L., 2008. Seasonal dynamics of guild structure in a bird assemblage of the central Monte desert. Basic Appl. Ecol. 9, 78–90.

 

López García, G.P., Mazzitelli, M.E., Fruitos, A., González, M., Marcucci, B., Giusti, R., et al., 2019. Biodiversidad de insectos polinizadores y depredadores en agroecosistemas vitícolas de Mendoza, Argentina. Consideraciones para el manejo del hábitat. Rev. Fac. Cienc. Agrar. 51, 309–322.

 

Macchi, L., Decarre, J., Goijman, A.P., Mastrangelo, M., Blendinger, P.G., Gavier-Pizarro, G.I., et al., 2020. Trade-offs between biodiversity and agriculture are moving targets in dynamic landscapes. J. Appl. Ecol. 57, 2054–2063. https://doi.org/10.1111/1365–2664.13699.

 
Mackenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A., 2002. Estimating Site Occupancy Rates when Detection Probabilities Are Less than One, vol. 83, pp. 2248–2255. https://doi.org/10.1890/0012–9658(2002)083[2248:ESORWD]2.0.CO;2.
 

McMartin, D.W., Hernani Merino, B.H., Bonsal, B., Hurlbert, M., Villalba, R., Ocampo, O.L., et al., 2018. Limitations of water resources infrastructure for reducing community vulnerabilities to extremes and uncertainty of flood and drought. Environ. Manage. 62, 1038–1047.

 

Mori, A.S., Isbell, F., Seidl, R., 2018. β-diversity, community assembly and ecosystem functioning. Trends Ecol. Evol. 33, 549–564. https://doi.org/10.1016/j.tree.2018.04.012.

 

Nyffeler, M., Şekercioğlu, Ç.H., Whelan, C.J., 2018. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 105, 47. https://doi.org/10.1007/s00114–018–1571-z.

 
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al., 2019. Package 'vegan. ' Community Ecol. Package Version 2.
 

Pacifici, K., Zipkin, E.F., Collazo, J.A., Irizarry, J.I., DeWan, A., 2014. Guidelines for a priori grouping of species in hierarchical community models. Ecol. Evol. 4, 877–888. https://doi.org/10.1002/ece3.976 PMID:24772267.

 

Paiola, A., Assandri, G., Brambilla, M., Zottini, M., Pedrini, P., Nascimbene, J., 2020. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: a global-scale systematic review. Sci. Total Environ. 706, 135839. https://doi.org/10.1016/j.scitotenv.2019.135839.

 

Pithon, J.A., Beaujouan, V., Daniel, H., Pain, G., Vallet, J., 2016. Are vineyards important habitats for birds at local or landscape scales? Basic Appl. Ecol. 17, 240–251. https://doi.org/10.1016/j.baae.2015.12.004.

 

Puig-Montserrat, X., Stefanescu, C., Torre, I., Palet, J., Fàbregas, E., Dantart, J., et al., 2017. Effects of organic and conventional crop management on vineyard biodiversity. Agric. Ecosyst. Environ. 243, 19–26. https://doi.org/10.1016/j.agee.2017.04.005.

 
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
 

Rollan, À., Hernández-Matías, A., Real, J., 2019. Organic farming favours bird communities and their resilience to climate change in Mediterranean vineyards. Agric. Ecosyst. Environ. 269, 107–115. https://doi.org/10.1016/j.agee.2018.09.029.

 

Royle, J.A., Dorazio, R.M., 2008. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Academic Press, Amsterdam, Heidelberg.

 

Sauer, J.R., Link, W.A., 2002. Hierarchical modeling of population stability and species group attributes from survey data. Ecology 83, 1743–1751. https://doi.org/10.1890/0012–9658(2002)083[1743:HMOPSA]2.0.CO;2.

 

Sekercioglu, C., 2006. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21, 464–471. https://doi.org/10.1016/j.tree.2006.05.007.

 

Sekercioglu, Ç. H., Wenny, D.G., Whelan, C.J., 2016. Why Birds Matter: Avian Ecological Function and Ecosystem Services. University of Chicago Press, Chicago.

 

Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Batáry, P., et al., 2012. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685. https://doi.org/10.1111/j.1469–185X.2011.00216.x.

 

Tuck, S.L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L.A., Bengtsson, J., 2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755. https://doi.org/10.1111/1365–2664.12219.

 

Whelan, C.J., Şekercioğlu, Ç.H., Wenny, D.G., 2015. Why birds matter: from economic ornithology to ecosystem services. J. Ornithol. 156, 227–238. https://doi.org/10.1007/s10336–015–1229-y.

 

Whelan, C.J., Wenny, D.G., Marquis, R.J., 2008. Ecosystem services provided by birds. Ann. N. Y. Acad. Sci. 1134, 25–60. https://doi.org/10.1196/annals.1439.003.

 

Winter, S., Bauer, T., Strauss, P., Kratschmer, S., Paredes, D., Popescu, D., et al., 2018. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 55, 2484–2495. https://doi.org/10.1111/1365–2664.13124.

 

Zipkin, E.F., DeWan, A., Andrew Royle, J., 2009. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J. Appl. Ecol. 46, 815–822. https://doi.org/10.1111/j.1365–2664.2009.01664.x.

Avian Research
Article number: 100174
Cite this article:
Goijman AP, Zarco A. Proximity to corridors benefits bird communities in vegetated interrow vineyards in Mendoza, Argentina. Avian Research, 2024, 15(2): 100174. https://doi.org/10.1016/j.avrs.2024.100174

102

Views

7

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 November 2023
Revised: 03 April 2024
Accepted: 03 April 2024
Published: 16 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return