AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Shallow sub-lakes are essential for sustaining the successful wintering of waterbirds in Poyang Lake, China

Mengjie LuaZhen ZhangaPeng ChenaChangxin XuaBin GaoaLuzhang Ruana,b( )
School of Life Sciences, Nanchang University, Nanchang, 330031, China
Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, 330031, China
Show Author Information

Abstract

For migratory waterbirds, the quality of wintering habitat is related to spring migration and successful breeding in the next year. The availability of food resources in the habitat is critical and varies within water levels. Although the water-level fluctuations in Poyang Lake have been extremely variable interannually in recent years, the wintering waterbird populations have remained relatively stable. Hence, the mechanism of maintaining the stability is worth exploring. This study aimed to compare the distribution of vegetation and herbivorous waterbirds in 2015–2016 and 2016–2017, focusing on three shallow sub-lakes and one main lake are. The results showed that the emergence of tubers and the growth of Carex spp. provided a continuous food supply and habitat for wintering waterbirds with a gradual decline in the water level. Shallow sub-lakes supported almost all of the tuber-eating waterbirds (1.42–1.62 × 105) and most geese (1.34–1.53 × 106). However, the main lake area, covered with Persicaria hydropiper, did not provide adequate and accessible food. This resulted in almost no distribution of tuber-eating waterbirds, with only a few geese congregating in early winter. Our results demonstrated that the shallow sub-lakes under human control provided a different environment from the main lake and are key to sustaining the successful wintering of hundreds of thousands of migratory waterbirds in Poyang Lake. Therefore, we recommend refining the anthropogenic management of the shallow sub-lakes to regulate the water level to ensure the carrying capacity of Poyang Lake.

References

 

Barter, M., Cao, L., Chen, L., Lei, G., 2005. Results of a survey for waterbirds in the lower Yangtze floodplain, China, in January-February 2004. Forktail 21, 1-7.

 
Barzen, B.J., Engels, M., James, B., Harris, J., Wu, G., 2009. Potential impacts of a watercontrol structure on the amount and distribution of wintering waterbirds at PoyangLake. Poyang Lake Assessment. International Crane Foundation, Baraboo, pp. 8–28.
 

Baschuk, M.S., Koper, N., Wrubleski, D.A., Goldsborough, G., 2012. Effects of water depth, cover and food resources on habitat use of marsh birds and waterfowl in boreal wetlands of Manitoba, Canada. Waterbirds 35, 44-55. https://doi.org/10.1675/063.035.0105.

 

Burnham, J., Barzen, J., Pidgeon, A.M., Sun, B., Wu, J., Liu, G., et al., 2017. Novel foraging by wintering Siberian Cranes at China's Poyang Lake indicates broader changes in the ecosystem and raises new challenges for a critically endangered species. Bird. Conserv. Int. 27, 204-223. https://doi.org/10.1017/S0959270916000150.

 

Chen, L.G., Chen, L.M., Xu, Y.F., Luan, Z.Y., Jin, Q., Shi, Y., et al., 2020. Effects of water level fluctuation on the potential habitat area of Vallisneria natans in Poyang Lake. Water Sci. Adv. 31, 377-384. https://doi.org/10.14042/j.cnki.32.1309.2020.03.007.

 
Delany, S., 2005. Guidelines for Participants in the International Waterbird Census(IWC). Wetlands International, Wageningen.
 

Doyle, R.D., Smart, R.M., 2001. Effects of drawdowns and dessication on tubers of hydrilla, an exotic aquatic weed. Weed Sci. 49, 135-140.

 

Feng, L., Hu, C., Chen, X., Cai, X., Tian, L., Gan, W., 2012. Assessment of inundation changes of Poyang Lake using MODIS observation between 2000 and 2010. Remote Sens. Environ. 121, 80-92. https://doi.org/10.1016/j.rse.2012.01.014.

 

Fuller, D.O., Wang, Y., 2014. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the southeastern saline everglades wetlands. Wetlands 34, 67-77.

 

Ge, G., Chen, S., 2015. Wetland Plants of Poyang Lake. Science Press, Beijing.

 

González-Gajardo, A., Sepúlveda, P.V., Schlatter, R., 2009. Waterbird assemblages and habitat characteristics in wetlands: influence of temporal variability on species-habitat relationships. Waterbirds 32, 225-233. https://doi.org/10.1675/063.032.0203.

 

Gownaris, N.J., Rountos, K.J., Kaufman, L., Kolding, J., Lwiza, K.M.M., Pikitch, E.K., 2018. Water level fluctuations and the ecosystem functioning of lakes. J. Great Lake. Res. 44, 1154-1163. https://doi.org/10.1016/j.jglr.2018.08.005.

 

Hassall, M., Riddington, R., Helden, A., 2001. Foraging behaviour of brent geese, Branta b. bernicla, on grasslands: effects of sward length and nitrogen content. Oecologia 127, 97-104. https://doi.org/10.1007/s004420000563.

 

Holm, T.E., Clausen, P., 2006. Effects of water level management on autumn staging waterbird and macrophyte diversity in three Danish coastal lagoons. Biodivers. Conserv. 15, 4399-4423. https://doi.org/10.1007/s10531-005-4384-2.

 

Hou, J., Liu, Y., Fraser, J.D., Li, L., Zhao, B., Lan, Z., et al., 2020. Drivers of a habitat shift by critically endangered Siberian cranes: evidence from long-term data. Ecol. Evol. 10, 11055-11068. https://doi.org/10.1002/ece3.6720.

 

Hu, Z.P., Zhang, Z.F., Liu, Y.Z., Ji, W.T., Ge, G., 2015. The function and significance of the Shallow-Lakes in the Poyang Lake wetland ecosystem. Jiangxi Hydraul. Sci. Technol. 41, 317-323 (in Chinese).

 

Jeffrey, L.B., Peek, J.M., Strand, E.K., 2009. Estimates of elk summer range nutritional carrying capacity constrained by probabilities of habitat selection. J. Wildl. Manag. 70, 283-294. https://doi.org/10.2193/0022-541X(2006)70[283:EOESRN]2.0.CO;2.

 

Jia, Y., Jiao, S., Zhang, Y., Zhou, Y., Lei, G., Liu, G., 2013. Diet shift and its impact on foraging behavior of Siberian crane (Grus leucogeranus) in Poyang Lake. PLoS One 8, e65843. https://doi.org/10.1371/journal.pone.0065843.

 

Jiang, F., Qi, S., Liao, F., Ding, M., Wang, Y., 2014. Vulnerability of Siberian crane habitat to water level in Poyang Lake wetland, China. GISci. Rem. Sen. 51, 662-676. https://doi.org/10.1080/15481603.2014.978126.

 

Kirby, J.S., Stattersfield, A.J., Butchart, S.H.M., Evans, M.I., Newton, I., 2008. Key conservation issues for migratory land- and waterbird species on the world's major flyways. Bird. Conserv. Int. 18, S49-S73. https://doi.org/10.1017/S0959270908000439.

 

Klein, E., Berg, E.E., Dial, R., 2005. Wetland drying and succession across the kenai peninsula lowlands, southcentral Alaska. Can. J. For. Res. 35, 1931-1941. https://doi.org/10.1139/X05-129.

 

Klemas, V., 2013. Remote sensing of coastal wetland biomass: an overview. J. Coast Res. 29, 1016-1028.

 

Li, C., Yang, Y., Wang, Z., Yang, L., Zhang, D., Zhou, L., 2018. The relationship between seasonal water level fluctuation and habitat availability for wintering waterbirds at Shengjin lake, China. Bird Conserv. Int. 29, 100-114. https://doi.org/10.1017/S0959270918000035.

 

Li, L., Zhang X., Qin, H., Hu, X., Chen, J., 2015. Effects of tuber-feeding waterbird guild and water level fluctuation on tuber distribution of submerged macrophytes in Shahu Lake. Chin. J. Ecol. 34, 661-669.

 

Li, Y., Qian, F., Silbernagel, J., Larson, H., 2019a. Community structure, amount variation and population trends of waterbirds in relation to water level fluctuation in Poyang Lake. J. Great Lake. Res. 45, 976-985. https://doi.org/10.1016/j.jglr.2019.08.002.

 

Li, Y., Zhang, Q., Cai, Y., Tan, Z., Wu, H., Liu, X., et al., 2019b. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: insights from a complex floodplain setting (Poyang Lake, China). Sci. Total Environ. 660, 245-259. https://doi.org/10.1016/j.scitotenv.2019.01.015.

 

Lin, Y., Li, X., Tan, Z., Song, Y., Xu, C., 2023. Dynamic changes of plant communities in flooded wetlands of Poyang Lake based on spatiotemporal fusion of remote sensing. J. Lake Sci. 35, 1408-1423. (in Chinese).

 

Liu, H., Yuan, H., Wang, S., Zheng, L., Liao, M., 2021. Spatiotemporal dynamics of water body changes and their influencing factors in the seasonal lakes of the Poyang Lake region. Water 13, 1539. https://doi.org/10.3390/W13111539.

 
Mackinnon, J., Phillipps, K., 2000. A Field Guide to the Birds of China. Hunan EducationPress, Changsha.
 

Maia, P.D., Maurice, L., Tessier, E., Amouroux, D., Cossa, D., Moreira-Turcq, P., et al., 2018. Role of the floodplain lakes in the methylmercury distribution and exchanges with the Amazon River, Brazil. J. Environ. Sci. 68, 24-40. https://doi.org/10.1016/j.jes.2018.02.005.

 

McCall, T.C., Bender, L.C., 1997. Comparison of techniques for determining the nutrional carrying capacity for white-tailed deer. J. Range Manag. 50, 33-38.

 

Mei, X., Dai, Z., Fagherazzi, S., Chen, J., 2016. Dramatic variations in emergent wetland area in China's largest freshwater lake, Poyang Lake. Adv. Water Resour. 96, 1-10. https://doi.org/10.1016/j.advwatres.2016.06.003.

 
Meng, Z.J., 2018. Study on the Model of Wintering Geese Habitats and Carrying Capacityin Poyang Lake. Master's Thesis. Nanchang University, Nanchang (in Chinese).
 

Newton, I., 2008. The Migration Ecology of Birds. Academic Press, London.

 

Norris, D.R., 2005. Carry-over effects and habitat quality in migratory populations. Oikos 109, 178-186.

 

Robinson, V., Pizo, M.A., 2017. A floodplain with artificially reversed flood pulse is important for migratory and rare bird species. Rev. Bras. Ornitol. 25, 155-168. https://doi.org/10.1007/bf03544394.

 

Singh, M., Sinha, R., 2019. Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Sci. Total Environ. 651, 2473-2488. https://doi.org/10.1016/j.scitotenv.2018.10.139.

 

Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S., 2009. eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282-2292.

 

Tan, Z., Li, Y., Xu, X., Yao, J., Zhang, Q., 2019. Mapping inundation dynamics in a heterogeneous floodplain: insights from integrating observations and modeling approach. J. Hydrol. 572, 148-159. https://doi.org/10.1016/j.jhydrol.2019.02.039.

 

van Eerden, M.R., Lenselink, G., Zijlstra, M., 2010. Long-term changes in wetland area and composition in The Netherlands affecting the carrying capacity for wintering waterbirds. Ardea 98, 265-282. https://doi.org/10.5253/078.098.0302.

 

van Geest, J.G., Coops, H., Roijackers, M.M.R., Buijse, D.A., Scheffer, M., 2005. Succession of aquatic vegetation driven by reduced water-level fluctuations in floodplain lakes. J. Appl. Ecol. 42, 251-260. https://doi.org/10.1111/j.1365-2664.2005.00995.x.

 
Wan, W.J., 2016. Carrying Capacity Analysis of Wintering Hooded Crane (Grus monacha)at Shengjin Lake. Master's Thesis. Anhui University, Hefei (in Chinese).
 

Wang, X., Fox, A.D., Cong, P.H., Cao, L., 2013. Food constraints explain the restricted distribution of wintering Lesser White-fronted Geese Anser erythropus in China. Ibis 155, 576-592. https://doi.org/10.1111/ibi.12039.

 

Wang, W., Fraser, J.D., Chen, J., 2017. Wintering waterbirds in the middle and lower Yangtze River floodplain: changes in amount and distribution. Bird. Conserv. Int. 27, 167-186. https://doi.org/10.1017/S0959270915000398.

 

Wang, W.J., Fraser, J.D., Chen, J.K., 2019. Distribution and long-term population trends of wintering waterbirds in Poyang Lake, China. Wetlands 39, 125-135. https://doi.org/10.1007/s13157-017-0981-6.

 

Wang, Y., Jia, Y., Guan, L., Lu, C., Lei, G., Wen, L., et al., 2013. Optimising hydrological conditions to sustain wintering waterbird populations in Poyang Lake National Natural Reserve: implications for dam operations. Freshw. Biol. 58, 2366-2379. https://doi.org/10.1111/fwb.12216.

 

Wang, X., Xu, J., 2016. Collection of Wetland Plants in Poyang Lake. Science Press, Beijing.

 

Wilcove, D.S., Wikelski, M., 2008. Going, going, done: is animal migration disappearing. PLoS Biol. 6, e188. https://doi.org/10.1371/journal.pbio.0060188.

 

Xia, S.X., Yu, D., Cui, P., Duan, H., Teng, J., Yu, X.B., 2021. Suitable-habitat dynamics for wintering geese in China's largest freshwater lake. Global Ecol. Conserv. 27, e01528. https://doi.org/10.1016/j.gecco.2021.e01528.

 

Xia, S.X., Yu, X.B., Fan, N., 2010. The wintering habitats of migrant birds and their relationship with water level in Poyang Lake, China. Resour. Sci. 32, 2072-2078. https://doi.org/10.1631/jzus.A0900773. (in Chinese).

 
Xu, F., 2021. Environmental Mechanisms Underlying the Seasonal Migration Phenologyof East Asian Waterfowl. Doctoral Thesis. Tsinghua University, Beijing. https://doi.org/10.27266/d.cnki.gqhau.2021.000127.
 

Yamazaki, D., Kanae, S., Kim, H., Oki, T., 2011. A physically-based description of floodplain inundation dynamics in a global river routing model. Water Resour. 47, w04501. https://doi.org/10.1029/2010WR009726.

 

Yu, X., Hawley-Howard, J., Pitt, A.L., Wang, J., Baldwin, R.F., Chow, A.T., 2015. Water quality of small seasonal wetlands in the Piedmont ecoregion, South Carolina, USA: effects of land use and hydrological connectivity. Water Res. 73, 98-108. https://doi.org/10.1016/j.watres.2015.01.007.

 

Yuan, L.Y., Li, W., 2008. Effects of water depths and substrate types on the distribution in winter buds of Vallisneria spinulosa in Poyang Lake. J. Yangtze Univ. Nat. Sci. 5, 55-58.

 

Yuan, L.Y., Li, W., Liu, G.H., Deng, G., 2012. Effects of different shaded conditions and water depths on the growth and reproductive strategy of Vallisneria spinulosa. Pakistan J. Bot. 44, 911-918.

 

Zhang, Q., Ye, X.C., Werner, A.D., Li, Y.L., Yao, J., Li, X.H., et al., 2014b. An investigation of enhanced recessions in Poyang Lake: comparison of Yangtze River and local catchment impacts. J. Hydrol. 517, 425-434. https://doi.org/10.1016/j.jhydrol.2014.05.051.

 

Zhang, S.D., Ma, Z.J., Choi, C.Y., Peng, H.B., Bai, Q.Q., Liu, W.L., et al., 2018. Persistent use of a shorebird staging site in the Yellow Sea despite severe declines in food resources implies a lack of alternatives. Bird. Conserv. Int. 28, 534-548. https://doi.org/10.1017/S0959270917000430.

 

Zhang, X.C., Jin, B.S., Chen, J.K., Wu, J.D., Liu, G.H., Ma, Z.J., 2014a. Relationship between habitat use of four waterbird species and water depth and food resource in Poyang Lake. Chin. J. Zool. 49, 657-665. (in Chinese) https://doi.org/10.13859/j.cjz.201405004.

 

Zhang, Y., Cao, L., Barter, M., Fox, A.D., Zhao, M.J., Meng, F.J., et al., 2011. Changing distribution and abundance of Swan Goose Anser cygnoides in the Yangtze River floodplain: the likely loss of a very important wintering site. Bird Convers. Int. 21, 36-48. https://doi.org/10.1017/S0959270910000201.

 

Zhu, Q., Zhan, Y., Liu, G., Wu, J., Zhan, H., Huang, Y., et al., 2012. Investigation of number and distribution of the waterfowl of Poyang Lake in the winter of 2011. Jiangxi Forest. Sci. 3, 1-9. (in Chinese) https://doi.org/10.16259/j.cnki.36-1342/s.2012.03.001.

 

Zou, L., Hu, B.S., Qi, S.H., Zhang, Q.Q., Ning, P., 2021. Spatiotemporal variation of Siberian crane habitats and the response to water level in Poyang Lake wetland, China. Rem. Sens. 13, 140. https://doi.org/10.3390/rs13010140.

Avian Research
Article number: 100178
Cite this article:
Lu M, Zhang Z, Chen P, et al. Shallow sub-lakes are essential for sustaining the successful wintering of waterbirds in Poyang Lake, China. Avian Research, 2024, 15(2): 100178. https://doi.org/10.1016/j.avrs.2024.100178

115

Views

1

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 11 August 2023
Revised: 01 January 2024
Accepted: 25 April 2024
Published: 27 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return