AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Development and parentage analysis of SNP markers for Chestnut-vented Nuthatch (Sitta nagaensis) based on ddRAD-seq data

Qingmiao Yuana,dXi Lub,dRuixin Moc,dXianyin XueXu Luoa( )Yubao Duana,d( )
Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, China
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
College of Forestry, Southwest Forestry University, Kunming 650224, China
Administration of Zixi Mountain Provincial Nature Reserve, Chuxiong 675008, China
Show Author Information

Abstract

Extra-pair paternity (EPP) is commonly found in socially monogamous birds, especially in small passerine birds, and there are interspecific and intraspecific variations in the extent of EPP. The Chestnut-vented Nuthatch (Sitta nagaensis) is a socially monogamous passerine bird, and verifying whether this species has EPP relies on parentage testing—S. nagaensis is not known to have EPP. In this study, we developed SNP markers of this species that are informative for parentage analysis from double digest restriction site-associated DNA sequencing (ddRAD-seq) data. A panel consisting of 50 SNP markers, with a mean heterozygosity of 0.343, was used to resolve 95% of nestlings to fathers. The combined exclusion probabilities for the first parent and second parent were 0.991 and 0.9999, respectively. This panel of SNP markers is a powerful tool for parentage assignments in S. nagaensis. In addition, we found that three offspring (7.9%) from three nests (23.1%) were the result of extra-pair fertilization out of 38 offspring in 13 nests. Our study provided information on parentage analysis that has not been reported before in S. nagaensis. It also supplemented the understudied EPP behavior of birds in Asia, contributing to a general understanding of the EPP behaviors of birds.

References

 

Anderson, E.C., Garza, J.C., 2006. The power of single-nucleotide polymorphisms for large-scale parentage inference. Genetics 172, 2567–2582.

 

Arrieta, R.S., Campagna, L., Mahler, B., Llambías, P.E., 2022. Neither paternity loss nor perceived threat of cuckoldry affects male nestling provisioning in grass wrens. Behav. Ecol. Sociobiol. 76, 147.

 

Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A., et al., 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, e3376.

 

Baruch, E., Weller, J.I., 2008. Estimation of the number of SNP genetic markers required for parentage verification. Anim. Genet. 39, 474–479.

 

Birkhead, T., 1987. Sperm competition in birds. Trends Ecol. Evol. 2, 268–272.

 

Brouwer, L., Griffith, S.C., 2019. Extra-pair paternity in birds. Mol. Ecol. 2, 4864–4882.

 

Brumfield, R.T., Beerli, P., Nickerson, D.A., Edwards, S.V., 2003. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 18, 249–256.

 

Campagna, L., Gronau, I., Silveira, L.F., Siepel, A., Lovette, I.J., 2015. Distinguishing noise from signal in patterns of genomic divergence in a highly polymorphic avian radiation. Mol. Ecol. 24, 4238–4251.

 

Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A., Cresko, W.A., 2013. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140.

 

Cramer, E.R.A., Hall, M.L., de Kort, S.R., Lovette, I.J., Vehrencamp, S.L., 2011. Infrequent extra-pair paternity in the Banded Wren, a synchronously breeding tropical passerine. Condor 113, 637–645.

 

Cockburn, A., 2006. Prevalence of different modes of parental care in birds. P Roy Soc B-Biol Sci 273, 1375–1383.

 

Coleman, S.W., Jones, A.G., 2011. Patterns of multiple paternity and maternity in fishes. Biol. J. Linn. Soc. 103, 735–760.

 

Cousseau, L., Van de Loock, D., Githiru, M., Vangestel, C., Lens, L., 2020. Female need for paternal care shapes variation in extra-pair paternity in a cooperative breeder. Behav. Ecol. 31, 548–558.

 

Dawson, D.A., Ball, A.D., Spurgin, L.G., Martín-Gálvez, D., Stewart, I.R.K., Horsburgh, G. J., et al., 2013. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species. BMC Genom. 14, 176–197.

 

DeWoody, J.A., Avise, J.C., 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56, 461–473.

 

Dussault, F.M., Boulding, E.G., 2018. Effect of minor allele frequency on the number of single nucleotide polymorphisms needed for accurate parentage assignment: a methodology illustrated using Atlantic salmon. Aquacult. Res. 49, 1368–1372.

 

Ellegren, H., 2004. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445.

 

Feng, Y.Y., Li, Q.S., Liang, D., Jiang, D.M., Wu, X.R., Gao, G., et al., 2019. Annual variation of bird richness in winter in Zixi Mountain, Yunnan Province. Journal of Southwest Forestry University 39, 110–115 (In Chinese with English Abstract).

 

Flanagan, S.P., Jones, A.G., 2019. The future of parentage analysis: from microsatellites to SNPs and beyond. Mol. Ecol. 28, 544–567.

 

Glaubitz, J.C., Rhodes, O.E., Dewoody, J.A., 2003. Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Mol. Ecol. 12, 1039–1047.

 

Griffith, S.C., Owens, I.P., Thuman, K.A., 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212.

 

Gudex, B., Walker, M., Fisher, P., Spelman, R., 2014. Validation of a single-nucleotide polymorphism panel for parentage testing of farmed red deer. Anim. Genet. 45, 142–143.

 

Gutierrez, A.P., Turner, F., Gharbi, K., Talbot, R., Lowe, N.R., Peñaloza, C., et al., 2017. Development of a medium density combined-species SNP array for Pacific and European oysters (Crassostrea gigas & Ostrea edulis). G3-Genes Genom Genet. 7, 2209–2218.

 

Han, K.L., Cox, J.A., Kimball, R.T., 2015. Uncommon levels of relatedness and parentage in a cooperatively breeding bird, the Brown-Headed Nuthatch (Sitta pusilla). Wilson J. Ornithol. 127, 593–600.

 

Jetz, W., Rubenstein, D.R., 2011. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78.

 

John, M.J.N., Karen, P., He, F.Q., 2000. Field Handbook of Chinese Birds. Hunan Education Publishing House, Changsha, China.

 

Kaiser, S.A., Taylor, S.A., Chen, N., Sillett, T.S., Bondra, E.R., Webster, M.S., 2017. A comparative assessment of SNP and microsatellite markers for assigning parentage in a socially monogamous bird. Mol. Ecol. Resour. 17, 183–193.

 

Kalinowski, S.T., Taper, M.L., Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106.

 

Kess, T., Gross, J., Harper, F., Boulding, E.G., 2016. Low-cost ddRAD method of SNP discovery and genotyping applied to the periwinkle Littorina saxatilis. J. Molluscan Stud. 82, 104–109.

 
Lalitha, S., 2000. Primer Premier 5, vol. 1. Biotech Software & Internet Report, pp. 270–272.
 

Lecce, I.D., Perrier, C., Szulkin, M., Sudyka, J., 2023. Extra-pair paternity, breeding density, and synchrony in natural cavities versus nestboxes in two passerine birds. Ecol. Evol. 13, e10163.

 

Liu, S.X., Palti, Y., Gao, G.T., Rexroad, C.E., 2015. Development and validation of a SNP panel for parentage assignment in rainbow trout. Aquaculture 452, 178–182.

 

Marshall, T.C., Slate, J., Kruuk, L.E., Pemberton, J.M., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655.

 

Miller, J.M., Campbell, E.O., Rotella, J.J., Macdonald, K.R., Gelatt, T.S., Davis, C.S., 2022. Evaluation of novel genomic markers for pedigree construction in an isolated population of Weddell Seals (Leptonychotes weddellii) at White Island, Antarctica. Conserv. Genet. Resour. 14, 69–80.

 

Mo, R.X., Li, Y., Yuan, Q.M., He, M.Y., Xu, X.Y., Chen, G.J., et al., 2023. Nest-site features and breeding ecology of chestnut-vented nuthatch Sitta nagaensis in southwestern China. Animals 13, 2034.

 

Morin, P.A., Luikart, G., Wayne, R.K., 2004. SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 19, 208–216.

 

Nielsen, R., Paul, J.S., Albrechtsen, A., Song, Y.S., 2011. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 12, 443–451.

 

Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S., Hoekstra, H.E., 2012. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135.

 

Pompanon, F., Bonin, A., Bellemain, E., Taberlet, P., 2005. Genotyping errors: causes, consequences and solutions. Nat. Rev. Genet. 6, 847–859.

 

Potti, J., Camacho, C., Canal, D., Martínez-Padilla, J., 2021. Three decades of crimes and misdemeanours in the nest box life of European Pied Flycatchers Ficedula hypoleuca. ARDEOLA 68, 315–333.

 

Premachandra, H.K.A., Nguyen, N.H., Knibb, W., 2019. Effectiveness of SNPs for parentage and sibship assessment in polygamous yellowtail kingfish Seriola lalandi. Aquaculture 499, 24–31.

 

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575.

 

Reitsma, L.R., Jukosky, J.A., Kimiatek, A.J., Goodnow, M.L., Hallworth, M.T., 2018. Extra-pair paternity in a long-distance migratory songbird beyond neighbors' borders and across male age classes. Can. J. Zool. 96, 49–54.

 

Segelbacher, G., Kabisch, D., Stauss, M., Tomiuk, J., 2005. Extra-pair young despite strong pair bonds in the European Nuthatch (Sitta europaea). J. Ornithol. 146, 99–102.

 

Strucken, E.M., Lee, S.H., Lee, H.K., Song, K.D., Gibson, J.P., Gondro, C., 2016. How many markers are enough? Factors influencing parentage testing in different livestock populations. J. Anim. Breed. Genet. 133, 13–23.

 

Thrasher, D.J., Butcher, B.G., Campagna, L., Webster, M.S., Lovette, I.J., 2018. Doubledigest RAD sequencing outperforms microsatellite loci at assigning paternity and estimating relatedness: a proof of concept in a highly promiscuous bird. Mol Ecol Resour 18, 953–965.

 

Toews, D.P.L., Campagna, L., Taylor, S.A., Balakrishnan, C.N., Baldassarre, D.T., DeaneCoe, P.E., et al., 2015. Genomic approaches to understanding population divergence and speciation in birds. Auk 133, 13–30.

 

Uller, T., Olsson, M., 2008. Multiple paternity in reptiles: patterns and processes. Mol. Ecol. 17, 2566–2580.

 

Valenzuela-Guerra, P., Morales-Moraga, D., González-Acuña, D., Vianna, J.A., 2013. Geographic morphological variation of Gentoo penguin (Pygoscelis papua) and sex identification: using morphometric characters and molecular markers. Polar Biol. 36, 1723–1734.

 

Vignal, A., Milan, D., SanCristobal, M., Eggen, A., 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34, 275–306.

 

Wan, D.M., Chang, P., Yin, J.X., 2013. Causes of extra-pair paternity and its inter-specific variation in socially monogamous birds. Acta Ecol. Sin. 33, 158–166.

 

Wang, B., Xie, X., Liu, S.M., Wang, X.J., Pang, H., Liu, Y., 2017. Development and characterization of novel microsatellite markers for the Common Pheasant (Phasianus colchicus) using RAD-seq. Avian Res. 8, 4.

 

Wang, J., Wei, Y.H., Zhang, L., Jiang, Y.T., Li, K.K., Wan, D.M., 2021. High level of extrapair paternity in the socially monogamous Marsh Tits (Poecile palustris). Avian Res. 12, 69.

 

Weinman, L.R., Solomon, J.W., Rubenstein, D.R., 2015. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Mol. Ecol. Resour. 15, 502–511.

 

Weng, Z.Y., Yang, Y., Wang, X., Wu, L., Hua, S.J., Zhang, H.F., et al., 2021. Parentage analysis in Giant Grouper (Epinephelus lanceolatus) using microsatellite and SNP markers from genotyping-by-sequencing data. Genes 12, 1042.

 

Zhang, L., Bai, L.M., Wang, J., Wan, D.M., Liang, W., 2021. Occupation rates of artificial nest boxes by secondary cavity-nesting birds: the influence of nest site characteristics. J. Nat. Conserv. 63, 12605.

Avian Research
Article number: 100179
Cite this article:
Yuan Q, Lu X, Mo R, et al. Development and parentage analysis of SNP markers for Chestnut-vented Nuthatch (Sitta nagaensis) based on ddRAD-seq data. Avian Research, 2024, 15(2): 100179. https://doi.org/10.1016/j.avrs.2024.100179

101

Views

1

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 07 February 2024
Revised: 25 April 2024
Accepted: 29 April 2024
Published: 06 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return