AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Annual variation of adult survival of a south-temperate House Wren population in Argentina

Gustavo J. Fernándeza( )Mariana E. CarroaPaulo E. Llambíasb
Grupo de Investigación en Ecofisiología de Fauna Silvestre, INIBIOMA-CONICET, Asentamiento Universitario San Martín de los Andes (AUSMA), Universidad Nacional Del Comahue, Pasaje de la Paz 235, (8370) San Martín de los Andes, Neuquén, Argentina
Grupo de Investigación de Biología de Aves, IADIZA CCT-Mendoza, Universidad Nacional de Cuyo, Avenida RuizLeal s/n Parque General San Martin, 5500, Mendoza, Argentina
Show Author Information

Abstract

Identifying factors affecting the survival of individuals is essential for understanding the evolution of life-history traits and population dynamics. Despite numerous studies on this subject in north-temperate environments, there is a lack of equivalent studies at similar latitudes in the south. Here, we used a 14-year dataset of capture, banding, and resighting to estimate the annual variation in the apparent adult survival probability of a south-temperate population of House Wrens (Troglodytes aedon bonariae). We evaluated temporal variation in survival and the effect of environmental (climatic) and demographic variables (adult abundance, total number of fledglings produced during each breeding season) on survival estimators. We found that the probability of adult survival decreased as the abundance of breeding adults increased. This density-dependent effect could be related to the resident lifestyle of southern House Wrens, which could determine an intense competition for territories and resources that ultimately would affect their survival.

References

 

Arbeiter, S., Schulze, M., Tamm, P., Hahn, S., 2016. Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster. J. Ornithol. 157, 155-163. https://doi.org/10.1007/s10336-015-1262-x.

 

Arturi, M.F., Goya, J.F., 2004. Estructura, dinámica y manejo de los talares del NE de Buenos Aires. Ecol. Man. Bosques Arg. 1, 1-23.

 

Atwood, J.L., 1980. Social interactions in the santa cruz island scrub jay. Condor 82, 440-448. https://doi.org/10.2307/1367571.

 

Avery, M.I., Krebs, J.R., 1984. Temperature and foraging success of Great Tits Parus major hunting for spiders. Ibis 126, 33-38. https://doi.org/10.1111/j.1474-919X.1984.tb03661.x.

 

Barrett, E.L., Richardson, D.S., 2011. Sex differences in telomeres and lifespan. Aging Cell 10, 913-921. https://doi.org/10.1111/j.1474-9726.2011.00741.x.

 
Blondel, J., Pradel, R., 1990. Is adult survival of the blue tit higher in a low fecundityinsular population than in a high fecundity mainland one? In: Blondel, J., Gosler, A., Lebreton, J.D., McCleery, R. (Eds.), Population Biology of Passerine Birds: anIntegrated Approach. Springer, Berlin, pp. 131–143.
 
Brewer, D., 2001. Wrens, Dippers and Thrashers. Yale Univ. Press, New Haven, CT.
 

Brown, J.L., 1969. Territorial behavior and population regulation in birds: a review and re-evaluation. Wilson Bull. 81, 293-329. https://doi.org/10.2307/4159863.

 
Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: APractical Information-Theoretic Approach, second ed. Springer, New York.
 

Carro, M.E., Fernández, G.J., 2023. Density-dependent natal philopatry in southern House Wrens. Ibis 165, 436-447. https://doi.org/10.1111/ibi.13157.

 

Carro, M.E., Llambías, P.E., Fernández, G.J., 2017. Mate and territory availability affect breeding dispersal and divorce in a resident Southern House Wren Troglodytes aedon musculus population. Ibis 159, 168-179. https://doi.org/10.1111/ibi.12438.

 

Carro, M.E., Mermoz, M.E., Fernández, G.J., 2014. Factors affecting the probability of double brooding by Southern House Wrens. J. Field Ornithol. 85, 227-236. https://doi.org/10.1111/jofo.12064.

 

Carro, M.E., Llambías, P.E., Mahler, B., Fernández, G.J., 2021. Contrasting patterns of natal dispersal of a south temperate house wren population at local and regional scales. J. Ornithol. 162, 895-907. https://doi.org/10.1007/s10336-021-01887-9.

 

Carro, M.E., Fernández, G.J., Mahler, B., 2024. Adult sex ratio in south temperate house wrens is explained by sexual differences in adult survival. J. Ornithol. 165, 115-125. https://doi.org/10.1007/s10336-023-02088-2.

 

Cawthorne, R.A., Marchant, J. H., 1980. The effects of the 1978/79 winter on British bird populations. Hous. Theor. Soc. 27, 163-172. https://doi.org/10.1080/00063658009476675.

 

Cézilly, F., Viallefont, A., Boy, V., Johnson, A.R., 1996. Annual variation in survival and breeding probability in greater flamingos. Ecology 77, 1143-1150. https://doi.org/10.2307/2265583.

 

Chiffard, J., Delestrade, A., Yoccoz, N.G., Loison, A., Besnard, A., 2019. Warm temperatures during cold season can negatively affect adult survival in an alpine bird. Ecol. Evol. 9, 12531-12543. https://doi.org/10.1002/ece3.5715.

 

Clark, M.E., Martin, T.E., 2007. Modeling tradeoffs in avian life history traits and consequences for population growth. Ecol. Model. 209, 110-120. https://doi.org/10.1016/j.ecolmodel.2007.06.008.

 
Conroy, M.J., 2009. Application of capture–recapture to addressing questions inevolutionary ecology. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (Eds.), ModelingDemographic Processes in Marked Populations, Environmental and EcologicalStatistics, vol. 3. Springer, Boston, MA, pp. 131–152.
 
Cooch, E.G., White, G.C., 2010. Program MARK: A Gentle Introduction, sixteenth ed. http://www.phidot.org/software/mark/docs/book.
 

Crone, E.E., 2001. Is survivorship a better fitness surrogate than fecundity? Evolution 55, 2611-2614. https://doi.org/10.1111/j.0014-3820.2001.tb00773.x.

 

Czapka, S.J., Johnson. L.S., 2000. Consequences of mate sharing for first-mated females in a polygynous songbird, the House Wren. Wilson Bull. 112, 72-81. https://doi.org/10.1676/0043-5643(2000)112[0072:COMSFF]2.0.CO;2.

 
DeSante, D.F., Kaschube, D.R., Saracco, J.F., 2015. Vital rates of North Americanlandbirds. The Institute for Bird Population. https://vitalratesofnorthamericanlandbirds.org/pages/bird.php?id=HOWR. (Accessed 20 March 2022).
 
Dhondt, A.A., Matthysen, E., Adriaensen, F., Lambrechts, M.M., 1990. Populationdynamics and regulation of a high density blue tit population. In: Blondel, J., Gosler, A., Lebreton, J.D., McCleery, R. (Eds.), Population Biology of Passerine Birds: an Integrated Approach. Springer, Berlin, pp. 39–53.
 

Donald, P.F. (2007). Adult sex ratios in wild bird populations. Ibis 149, 671-692. https://doi.org/10.1111/j.1474-919X.2007.00724.x.

 

Drilling, N.E., Thompson C.F., 1988. Natal and breeding dispersal in house wrens (Troglodytes aedon). Auk 105, 480-491. https://doi.org/10.1093/auk/105.3.480.

 

Dybala, K.E., Eadie, J.M., Gardali, T., Seavy, N.E., Herzog, M.P., 2013. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population. Global Change Biol. 19, 2688-2697. https://doi.org/10.1111/gcb.12228.

 

Ekman, J. 1984. Density-dependent seasonal mortality and population fluctuations of the temperate-zone Willow Tit (Parus montanus). J. Anim. Ecol. 53, 119-134. https://doi.org/10.2307/4346.

 

Ekman, J., Cederholm, G., Askenmo, C., 1981. Spacing and survival in winter groups of Willow Tit Parus montanus and Crested Tit P. cristatus—a removal study. J. Anim. Ecol. 50, 1-9. https://doi.org/10.2307/4027.

 

Fernández, G.J., Carro, M.E., Llambías, P.E., 2020. Spatial and temporal variation in breeding parameters of two south‐temperate populations of House Wrens. J. Field Ornithol. 91, 13-30. https://doi.org/10.1111/jofo.12319.

 
Fernández, G.J., Beade, M.S., Pujol, M., Mermoz, M.E., 2004. Plan de manejo de la Reserva de Vida Silvestre "Campos del Tuyú". Fundación Vida Silvestre Argentina. https://www.losquesevan.com/plan-de-manejo-refugio-vida-silvestre-campos-del-tuyu.1483c.
 

Frederiksen, M., Bregnballe, T., 2000. Evidence for density‐dependent survival in adult cormorants from a combined analysis of recoveries and resightings. J. Anim. Ecol. 69, 737-752. https://doi.org/10.1046/j.1365-2656.2000.00435.x.

 

Freed, L.A., 1987. The long-term pair bond of tropical house wrens: advantage or constraint? Am. Nat. 130, 507-525. https://doi.org/10.1086/284728.

 

Germain, M., Pärt, T., Gustafsson, L., Doligez, B., 2017. Natal dispersers pay a lifetime cost to increased reproductive effort in a wild bird population. Proc. Royal Soc. B. 284: 20162445. http://doi.org/10.1098/rspb.2016.2445.

 

Gibbs, H.L., Grant, P.R., 1987. Adult survivorship in Darwin's Ground Finch (Geospiza) populations in a variable environment. J. Anim. Ecol. 56, 797-813. https://doi.org/10.2307/4949.

 

Grosbois, V., Gimenez, O., Gaillard, J.M., Pradel, R., Barbraud, C., Clobert, J., Møller, A.P., Weimerskirch, H., 2008. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 83, 357-399. https://doi.org/10.1111/j.1469-185X.2008.00047.x.

 

Gullett, P., Evans, K.L., Robinson, R.A., Hatchwell, B.J., 2014. Climate change and annual survival in a temperate passerine: partitioning seasonal effects and predicting future patterns. Oikos123, 389-400. https://doi.org/10.1111/j.1600-0706.2013.00620.x.

 
Gustafsson, L., 1990. Life-history trade-offs and optimal clutch size in relation to age inthe collared flycatcher. In: Blondel, J., Gosler, A., Lebreton, J.D., McCleery, R. (Eds.), Population Biology of Passerine Birds: an Integrated Approach. Springer, Berlin, pp. 235–245.
 

Holmes, R.T., Sherry, T.W., Reitsma, L., 1989. Population structure, territoriality and overwinter survival of two migrant warbler species in Jamaica. Condor 91, 545-561. https://doi.org/10.2307/1368105.

 
Johnson, L.S., 2020. House wren Troglodytes aedon. In: Poole, A.F. (Ed.), The Birds ofNorth America Online. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.houwre.01.
 

Johnston, J.P., White, S.A., Peach, W. J., Gregory, R.D., 1997. Survival rates of tropical and temperate passerines: a Trinidadian perspective. Am. Nat. 150, 771-789.https://doi.org/10.1086/286093.

 

Karr, J.R., Nichols, J.D., Klimkiewicz, M.K., Brawn, J.D., 1990. Survival rates of birds of tropical and temperate forests: will the dogma survive? Am. Nat. 136, 277-291.https://doi.org/10.1086/285098.

 

Kendeigh, S.C., Baldwin, S.P., 1937. Factors affecting yearly abundance of passerine birds. Ecol. Monogr. 7, 93-123. https://doi.org/10.2307/1943303.

 

Klaassen, R.H.G., Hake, M., Strandberg, R., Koks, B.J., Trierweiler, C., Exo, K.-M., Bairlein, F., Alerstam, T., 2014. When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J. Anim. Ecol. 83, 176-184. https://doi.org/10.1111/1365-2656.12135.

 
Kluyver, H.N., 1971. Regulation of numbers in populations of great tits (Parus m. major).In: Boer, P.J., Gradwell, G.R. (Eds.), Dynamics of Populations. Pudoc, Wageningen, pp. 532–544.
 

Krebs, J.R., 1971. Territory and breeding density in the great tit Parus major. Ecology 52, 2-22. https://doi.org/10.2307/1934734.

 
Lack, D., 1954. The Natural Regulation of Animal Numbers. Clarendon Press, Oxford, UK.
 

Lahti, K., Orell, M., Rytkönen, S., Koivula, K., 1998. Time and food dependence in willow tit winter survival. Ecology 79, 2904-2916. https://doi.org/10.1890/0012-9658(1998)079[2904:TAFDIW]2.0.CO,2.

 

Lebreton, J.D., Burnham, K.P., Clobert, J., Anderson, D.R., 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67-118. https://doi.org/10.2307/2937171.

 

Liker, A., Székely, T., 2005. Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59, 890-897. https://doi.org/10.1111/j.0014-3820.2005.tb01762.x.

 

Lima, S.L., 2009. Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol. Rev. 84, 485-513. https://doi.org/10.1111/j.1469-185X.2009.00085.x.

 

Llambías, P.E., Fernández, G.J., 2009. Effects of nest boxes on the breeding biology of House Wrens in the southern temperate zone. Ibis 151, 113-121. https://doi.org/10.1111/j.1474-919X.2008.00868.x.

 

Llambías, P.E., Carro, M.E., Fernández, G.J., 2015. Latitudinal differences in life-history traits and parental care in northern and southern temperate zone house wrens. J. Ornithol. 156, 933-942. https://doi.org/10.1007/s10336-015-1217-2.

 

Lok, T., Overdijk, O., Tinbergen, J.M., Piersma, T., 2013. Seasonal variation in density dependence in age‐specific survival of a long‐distance migrant. Ecology 94, 2358-2369. https://doi.org/10.1890/12-1914.1.

 

Marra, P.P., Studds, C.E., Wilson, S., Sillett, T.S., Sherry, T.W., Holmes, R.T., 2015. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. Royal Soc. B 282, 20150624. https://doi.org/10.1098/rspb.2015.0624.

 

Martin, K., 1995. Patterns and mechanisms for age-dependent reproduction and survival in birds. Am. Zool. 35, 340-348. https://doi.org/10.1093/icb/35.4.340.

 

Martin, T.E., 2004. Avian life-history evolution has an eminent past: does it have a bright future? Auk 121, 289-301. https://doi.org/10.1093/auk/121.2.289.

 

Martin, T.E., Oteyza, J.C., Boyce, A.J., Lloyd, P., Ton, R., 2015. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223-236. https://doi.org/10.1086/681986.

 

McCallum, H., Kikkawa, J., Catterall, C., 2000. Density dependence in an island population of silvereyes. Ecol. Lett. 3, 95-100. https://doi.org/10.1046/j.1461-0248.2000.00120.x.

 

McCarty, J.P., 2001. Ecological consequences of recent climate change. Conserv. Biol.15, 320-331. https://doi.org/10.1046/j.1523-1739.2001.015002320.x.

 

McKechnie, A.E., Wolf, B. O., 2010. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253-256. https://doi.org/10.1098/rsbl.2009.0702.

 
Newton, I., 1998. Population Limitation in Birds. Academic Press, Cambridge, MS.
 

Newton, I., 1992. Experiments on the limitation of bird numbers by territorial behavior. Biol. Rev. 67, 129-173. https://doi.org/10.1111/j.1469-185X.1992.tb01017.x.

 

Newton, I., 2006. Can conditions experienced during migration limit the population levels of birds? J. Ornithol. 147, 146-166. https://doi.org/10.1007/s10336-006-0058-4.

 
Newton, I., 2024. Migration mortality in birds. Ibis. https://doi.org/10.1111/ibi.13316.
 

Newton, I., Rothery, P., Dale, L.C., 1998. Density-dependence in the bird populations of anoak wood over 22 years. Ibis 140, 131-136. https://doi.org/10.1111/j.1474-919X.1998.tb04550.x.

 

Nicol-Harper, A., Doncaster, C.P., Hilton, G.M., Wood, K.A., Ezard, T.H.G., 2023. Conservation implications of a mismatch between data availability and demographic impact. Ecol. Evol. 13, e10269. https://doi.org/10.1002/ece3.10269.

 

Nilsson, S.G., 1982. Seasonal variation in the survival rate of adult Nuthatches Sitta europaea in Sweden. Ibis 124, 96-100. https://doi.org/10.1111/j.1474-919X.1982.tb03748.x.

 

Nilsson, S.G., 1987. Limitation and regulation of population density in the nuthatch Sitta europaea (Aves) breeding in natural cavities. J. Anim. Ecol. 56, 921-937. https://doi.org/10.2307/4957.

 

Paradis, E., Baillie, S.R., Sutherland, W.J., Gregory, R.D., 2002.Exploring density-dependent relationships in demographic parameters in populations of birds at a large spatial scale. Oikos 97, 293-307. https://doi.org/10.1034/j.1600-0706.2002.970215.x.

 

Payevsky, V.A., 2006. Mortality rate and population density regulation in the great tit, Parus major L.: a review. Russ. J. Ecol. 37, 180-187. https://doi.org/10.1134/S1067413606030064.

 

Peach, W.J., Baillie, S.R., Underbill, L., 1991. Survival of British sedge warblers Acrocephalus schoenobaenus in relation to west africa rainfall. Ibis 133, 300-305. https://doi.org/10.1111/j.1474-919X.1991.tb04573.x.

 

Penteriani, V., Ferrer, M., Delgado, M.M., 2011. Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim. Conserv. 14, 233-241. https://doi.org/10.1111/j.1469-1795.2010.00433.x.

 
Perrins, C.M., 1979. British Tits. Collins, London, UK.
 

Promislow, D.E., Montgomerie, R., Martin, T.E., 1992. Mortality costs of sexual dimorphism in birds. Proc. Royal Soc. B 250, 143-150. https://doi.org/10.1098/rspb.1992.0142.

 

Rakhimberdiev, E., van den Hout, P.J., Brugge, M., Spaans, B., Piersma, T., 2015. Seasonal mortality and sequential density dependence in a migratory bird. J. Avian Biol. 46, 332-341. https://doi.org/10.1111/jav.00701.

 
Ricklefs, R.E., 1974. Energetics of reproduction in birds. In: Paynter, R.A. (Ed.), AvianEnergetics, vol. 15. Publ. Nuttall Ornithol. Club, n°, Cambridge, Massachusetts, pp. 152–292.
 

Ricklefs, R.E., 1977. On the evolution of reproductive strategies in birds: reproductive effort. Am. Nat. 111, 453-478. https://doi.org/10.1086/283179.

 

Ricklefs, R.E., 1980. Geographical variation in clutch size among passerine birds: ashmole's hypothesis. Auk 97, 38-49, https://doi.org/10.1093/auk/97.1.38.

 

Ricklefs, R.E., Tsunekage, T., Shea, R.E., 2011. Annual adult survival in several new world passerine birds based on age ratios in museum collections. J. Ornithol. 152, 481-495. https://doi.org/10.1007/s10336-010-0614-9.

 

Robinson, R.A., Green, R.E., Baillie, S.R., Peach, W.J., Thomson, D.L., 2004. Demographic mechanisms of the population decline of the song thrush Turdus philomelos in Britain. J. Anim. Ecol. 73, 670-682. https://doi.org/10.1111/j.0021-8790.2004.00841.x.

 

Robinson, R.A., Baillie, S.R., Crick, H.Q., 2007. Weather‐dependent survival: implications of climate change for passerine population processes. Ibis 149, 357-364. https://doi.org/10.1111/j.1474-919X.2006.00648.x.

 

Sæther, B., Bakke, Ø., 2000. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642-653. https://doi.org/10.1890/0012-9658(2000)081[0642:ALHVAC]2.0.CO,2.

 

Salewski, V., Hochachka, W.M., Fiedler, W., 2013. Multiple weather factors affect apparent survival of European passerine birds. PLoS One 8, e59110. https://doi.org/10.1371/journal.pone.0059110.

 

Saracco, J.F., Royle, J.A., DeSante, D.F., Gardner, B., 2010. Modeling spatial variation in avian survival and residency probabilities. Ecology 91, 1885-1891. https://doi.org/10.1890/09-0705.1.

 

Schaub, M., Von Hirschheydt, J., 2009. Effect of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture–recapture models. J. Anim. Ecol. 78, 625-635. https://doi.org/10.1111/j.1365-2656.2008.01508.x.

 

Scholer, M.N., Strimas-Mackey, M., Jankowski, J.E., 2020. A meta-analysis of global avian survival across species and latitude. Ecol. Lett. 23, 1537-1549. https://doi.org/10.1111/ele.13573.

 
Skalski, J.R., Hoffmann, A., Smith, S.G., 1993. Testing the significance of individual-andcohort-level covariates in animal survival studies. In: Lebreton, J. -D., North, P.M.(Eds.), Marked Individuals in the Study of Bird Population. Birkhäuser Verlag, Basel, Switzerland, pp. 9–28.
 

Sillett, S.T., Holmes, R.T., 2002. Variation in survivorship of a migratory songbird throughout its annual cycle. J. Anim. Ecol. 71, 296-308. https://doi.org/10.1046/j.1365-2656.2002.00599.x.

 

Smith, S.M., 1995. Age-specific survival in breeding black-capped chickadees (Parus atricapillus). Auk 112, 840-846. https://doi.org/10.2307/4089016.

 

Snow, D.W., Lill, A., 1974. Longevity records for some neotropical land birds. Condor 76, 262-267. https://doi.org/10.2307/1366339.

 
Stearns, S.C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford, UK.
 

Stearns, S.C., 2000. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476-486. https://doi.org/10.1007/s001140050763.

 

Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S., Lima, M., 2002. Ecological effects of climate fluctuations. Science 297, 1292-1296. https://doi.org/10.1126/science.1071281.

 

Strinella, E., Scridel, D., Brambilla, M., Schano, C., Korner-Nievergelt, F., 2020. Potential sex-dependent effects of weather on apparent survival of a high-elevation specialist. Sci. Rep. 10, 8386. https://doi.org/10.1038/s41598-020-65017-w.

 
Stutchbury, B.J.M., Morton, E.S., 2001. Behavioral Ecology of Tropical Birds. AcademicPress, San Diego, Californi.
 

Thomson, D.L., Monaghan, P.A.T., Furness, R.W., 1998. The demands of incubation and avian clutch size. Biol. Rev.73, 293-304. https://doi.org/10.1017/S0006323198005180.

 

Vafidis, J., Smith, J., Thomas, R., 2019. Climate change and insectivore ecology. eLS 1-8. https://doi.org/10.1002/9780470015902.a0028030.

 
Vervoorst, F.B., 1967. Las Comunidades Vegetales de la Depresión del Salado (Provinciade Buenos Aires). INTA, Buenos Aires, Argentina.
 

White, G.C., Burnham, K.P., 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46 (Sup1), S120-S139. https://doi.org/10.1080/00063659909477239.

 

Woodworth, B.K., Norris, D.R., Graham, B.A., Kahn, Z.A., Mennil, D.J., 2018. Hot temperatures during the dry season reduce survival of a resident tropical bird. Proc. Royal Soc. B285, 20180176 https://doi.org/10.1098/rspb.2018.0176.

 

Young, B.E., 1996. An experimental analysis of small clutch size in tropical House Wrens. Ecology 77, 472-488. https://doi.org/10.2307/2265623.

Avian Research
Article number: 100180
Cite this article:
Fernández GJ, Carro ME, Llambías PE. Annual variation of adult survival of a south-temperate House Wren population in Argentina. Avian Research, 2024, 15(2): 100180. https://doi.org/10.1016/j.avrs.2024.100180

132

Views

3

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 04 January 2024
Revised: 01 May 2024
Accepted: 03 May 2024
Published: 06 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return