AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Inbreeding and genetic load in a pair of sibling grouse species: Tetrastes sewersowi and T. bonasia

Kai Songa,b,1Tom van der Valkc,1Bin GaoaPeter HalvarssondYun FangaWendong XieaSiegfried KlauseZhiming HanfYue-Hua Suna( )Jacob Höglundb
Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
Department of Cell and Molecular Biology, Uppsala, 75273, Sweden
Unit of Parasitology, Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, Uppsala, 75007, Sweden
Lindenhöhe 5, Jena, D-07749, Germany
The State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China

1 These two authors contributed equally to this work.

Show Author Information

Abstract

Genetic load and inbreeding are recognized as important factors to be considered in conservation programs. Elevated levels of both can increase the risk of population extinction by negatively impacting fitness-related characters in many species of plants and animals, including humans (inbreeding depression). Genomic techniques are increasingly used in measuring and understanding genetic load and inbreeding and their importance in evolution and conservation. We used whole genome resequencing data from two sibling grouse species in subarctic Eurasia to quantify both. We found a large range of inbreeding measured as FROH (fraction of runs of homozygosity) in individuals from different populations of Chinese Grouse (Tetrastes sewerzowi) and Hazel Grouse (T. bonasia). FROH estimated from genome-wide runs of homozygosity (ROH) ranged from 0.02 to 0.24 among Chinese Grouse populations and from 0.01 to 0.44 in Hazel Grouse. Individuals from a population of Chinese Grouse residing in the Qilian mountains and from the European populations of Hazel Grouse (including samples from Sweden, Germany and Northeast Poland) were the most inbred (FROH ranged from 0.10 to 0.23 and 0.11 to 0.44, respectively). These levels are comparable to other highly inbred populations of birds. Hazel Grouse from northern China and Chinese Grouse residing in the Qinghai-Tibetan Plateau showed relatively lower inbreeding levels. Comparisons of the ratio between deleterious missense mutations and synonymous mutations revealed higher levels in Chinese Grouse as compared to Hazel Grouse. These results are possibly explained by higher fixation rates, mutational melt down, in the range-restricted Chinese Grouse compared to the wide-ranging Hazel Grouse. However, when we compared the relatively more severe class of loss-of-function mutations, Hazel Grouse had slightly higher levels than Chinese Grouse, a result which may indicate that purifying selection (purging) has been more efficient in Chinese Grouse on this class of mutations.

References

 

Abbott, R.J., Smith, L.C., Milne, R.I., Crawford, R.M., Wolff, K., Balfour, J., 2000. Molecular analysis of plant migration and refugia in the Arctic. Science 289, 1343-1346.

 

Backström, N., Brandström, M., Gustafsson, L., Qvarnström, A., Cheng, H., Ellegren, H., 2006. Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174, 377-386.

 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. -B (Method. ) 57, 289-300.

 

Bertorelle, G., Raffini, F., Bosse, M., Bortoluzzi, C., Iannucci, A., Trucchi, E., et al., 2022. Genetic load: genomic estimates and applications in non-model animals. Nat. Rev. Genet. 23, 492-503.

 

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.

 

Ceballos, F.C., Joshi, P.K., Clark, D.W., Ramsay, M., Wilson, J.F., 2018. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220.

 

Charlesworth, D., Willis, J.H., 2009. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783-796.

 

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.

 

Dussex, N., Van Der Valk, T., Morales, H.E., Wheat, C.W., Díez-del-Molino, D., Von Seth, J., et al., 2021. Population genomics of the critically endangered kākāpō. Cell Genom. 1, 100002.

 

Fay, J.C., Wyckoff, G.J., Wu, C.-I., 2001. Positive and negative selection on the human genome. Genetics 158, 1227-1234.

 

Feng, S., Fang, Q., Barnett, R., Li, C., Han, S., Kuhlwilm, M., et al., 2019. The genomic footprints of the fall and recovery of the crested ibis. Curr. Biol. 29, 340-349. e347.

 

Frankham, R., 1995a. Conservation genetics. Ann. Rev. Genet. 29, 305-327.

 

Frankham, R., 1995b. Inbreeding and extinction: a threshold effect. Conserv. Biol. 9, 792-799.

 

García-Dorado, A., 2012. Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection. Genetics 190, 1461-1476.

 

Grossen, C., Guillaume, F., Keller, L.F., Croll, D., 2020. Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat. Comm. 11, 1001.

 

Hale, M., Jensen, H., Birkhead, T., Burke, T., Slate, J., 2008. A comparison of synteny and gene order on the homologue of chicken chromosome 7 between two passerine species and between passerines and chicken. Cytogenet. Genom. Res. 121, 120-129.

 

Hedrick, P., Robinson, J., Peterson, R.O., Vucetich, J.A., 2019. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22, 302-309.

 

Hedrick, P.W., 1994. Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73, 363-372.

 

Hedrick, P.W., Garcia-Dorado, A., 2016. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940-952.

 

Höglund, J., 2009. Evolutionary Conservation Genetics. Oxford University Press, Oxford.

 

Ingolfsson, O., Moller, P., Lubinski, D., Forman, S., 2006. Severnaya Zemlya, Arctic Russia: a Nucleation Area for Kara Sea Ice Sheets During the Middle to Late Quaternary. AGU Fall Meeting Abstracts.

 
IUCN, 2020. Version 2019-3. The IUCN red list of threatened species. https://www.iucnredlist.org.
 

Kardos, M., Åkesson, M., Fountain, T., Flagstad, Ø., Liberg, O., Olason, P., et al., 2018. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol. 2, 124-131.

 

Kardos, M., Armstrong, E.E., Fitzpatrick, S.W., Hauser, S., Hedrick, P.W., Miller, J.M., et al., 2021. The crucial role of genome-wide genetic variation in conservation. Proc. Natl. Acad. Sci. USA 118, e2104642118.

 

Keller, L.F., Waller, D.M., 2002. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230-241.

 

Khan, A., Patel, K., Shukla, H., Viswanathan, A., van der Valk, T., Borthakur, U., et al., 2021. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. USA 118, e2023018118.

 

Kyriazis, C.C., Wayne, R.K., Lohmueller, K.E., 2021. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. 5, 33-47.

 

Li, H., 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993.

 
Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997.
 

Li, H., Durbin, R., 2011. Inference of human population history from individual whole-genome sequences. Nature 475, 493.

 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.

 

Lynch, M., Gabriel, W., 1990. Mutation load and the survival of small populations. Evolution 44, 1725-1737.

 

Mathur, S., Tomeček, J.M., Tarango-Arámbula, L.A., Perez, R.M., DeWoody, J.A., 2022. An evolutionary perspective on genetic load in small, isolated populations as informed by whole genome resequencing and forward-time simulations. Evolution 77, 690-704.

 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom. Res. 20, 1297-1303.

 

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., et al., 2016. The ensembl variant effect predictor. Genom. Biol. 17, 122.

 

Mooney, J.A., Marsden, C.D., Yohannes, A., Wayne, R.K., Lohmueller, K.E., 2023. Long-term small population size, deleterious variation, and altitude adaptation in the Ethiopian wolf, a severely endangered canid. Mol. Biol. Evol. 40, msac277.

 

Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., Durbin, R., 2016. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749-1751.

 

Newman, D., Pilson, D., 1997. Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51, 354-362.

 

Ng, P.C., Henikoff, S., 2003. SIFT: Predicting amino acid changes that affect protein function. Nucl. Acids Res. 31, 3812-3814.

 

Persons, N.W., Hosner, P.A., Meiklejohn, K.A., Braun, E.L., Kimball, R.T., 2016. Sorting out relationships among the grouse and ptarmigan using intron, mitochondrial, and ultra-conserved element sequences. Mol. Phylogenet. Evol. 98: 123-132.

 

Robinson, J.A., Brown, C., Kim, B.Y., Lohmueller, K.E., Wayne, R.K., 2018. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487-3494.

 

Rózsa, J., Strand, T.M., Montadert, M., Kozma, R., Höglund, J., 2016. Effects of a range expansion on adaptive and neutral genetic diversity in dispersal limited Hazel grouse (Bonasa bonasia) in the French Alps. Conserv. Genet. 17, 401-412.

 
Saarnisto, M., Lunkka, J.P., 2004. Climate variability during the last interglacial-glacial cycle in NW Eurasia. In: Battarbee, R.W., Gasse, F., Stickley, C.E. (Eds.), Past Climate Variability through Europe and Africa, vol. 6. Springer, Dordrecht, pp. 443–464.
 

Schiffels, S., Durbin, R., 2014. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919.

 
Shields, W.M., 1987. Dispersal and mating systems: investigating their causal connections. In: Chepko-Sad, B.D., Halpin, Z.T. (Eds.), Mammalian Dispersal Patterns: the Effects of Social Structure on Population Genetics. University of Chicago Press, Chicago, pp. 3–24.
 

Smeds, L., Ellegren, H., 2022. From high masked to high realized genetic load in inbred Scandinavian wolves. Mol. Ecol. 32, 1567-1580.

 

Song, K., Gao, B., Halvarsson, P., Fang, Y., Jiang, Y.-X., Sun, Y.-H., et al., 2020. Genomic analysis of demographic history and ecological niche modeling in the endangered Chinese Grouse Tetrastes sewerzowi. BMC Genom. 21, 581.

 

Song, K., Gao, B., Halvarsson, P., Fang, Y., Klaus, S., Jiang, Y.-X., et al., 2021. Demographic history and divergence of sibling grouse species inferred from whole genome sequencing reveal past effects of climate change. BMC Ecol. Evol. 21, 1-10.

 

Soulé, M.E., 1980. Conservation Biology: An Evolutionary Ecological Perspective. Sinauer Associates Inc., Sunderland, MA.

 

Storch, I., 2000. Conservation status and threats to grouse worldwide: an overview. Wildl. Biol. 6, 195-205.

 

Sun, Y.-H., 2000. Distribution and status of the Chinese grouse Bonasa sewerzowi. Wildl. Biol. 6, 271-275.

 

Sun, Y.H., Swenson, J.E., Fang, Y., Klaus, S., Scherzinger, W., 2003. Population ecology of the Chinese grouse, Bonasa sewerzowi, in a fragmented landscape. Biol. Conserv. 110, 177-184.

 

Swenson, J.E., 1991. Status and conservation of hazel grouse in Europe. Ornis Scand. 22, 297-298.

 

Szpiech, Z.A., Xu, J., Pemberton, T.J., Peng, W., Zöllner, S., Rosenberg, N.A., et al., 2013. Long runs of homozygosity are enriched for deleterious variation. Am. J. Human Genet. 93, 90-102.

 

Tallmon, D.A., Luikart, G., Waples, R.S., 2004. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489-496.

 

Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., Del Angel, G., LevyMoonshine, A., et al., 2013. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 43 (11), 10.11-11.10.33.

 

van der Valk, T., 2019. Genomics of Population Decline. Doctoral Dissertation. Uppsala Unversity, Uppsala.

 
van der Valk, T., de Manuel, M., Marques-Bonet, T., Guschanski, K., 2019a. Estimates of genetic load in small populations suggest extensive purging of deleterious alleles. bioRxiv. https://doi.org/10.1101/696831.
 

van der Valk, T., Díez-del-Molino, D., Marques-Bonet, T., Guschanski, K., Dalén, L., 2019b. Historical genomes reveal the genomic consequences of recent population decline in eastern gorillas. Curr. Biol. 29, 165-170.

 

van Oosterhout, C., 2020. Mutation load is the spectre of species conservation. Nat. Ecol. Evol. 4, 1004-1006.

 

Vaurie, C., 1965. The birds of the Palearctic fauna. Non-passeriformes. Bird-Banding 37, 145-146.

 

Warren, W.C., Hillier, L.W., Tomlinson, C., Minx, P., Kremitzki, M., Graves, T., et al., 2017. A new chicken genome assembly provides insight into avian genome structure. G3 Genes Genom. Genet. 7, 109-117.

 

Wootton, E., Robert, C., Taillon, J., Côté, S., Shafer, A.B., 2023. Genomic health is dependent on long-term population demographic history. Mol. Ecol. 32, 1943-1954.

 

Wright, S., 1977. Evolution and the Genetics of Populations. 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago, IL.

 

Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., et al., 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucl. Acids Res. 39 (suppl_2), W316–W322.

 

Xue, Y., Prado-Martinez, J., Sudmant, P.H., Narasimhan, V., Ayub, Q., Szpak, M., et al., 2015. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242-245.

 

Zhan, X., Zheng, Y., Wei, F., Bruford, M.W., Jia, C., 2011. Molecular evidence for Pleistocene refugia at the eastern edge of the Tibetan Plateau. Mol. Ecol. 20, 3014-3026.

Avian Research
Article number: 100184
Cite this article:
Song K, van der Valk T, Gao B, et al. Inbreeding and genetic load in a pair of sibling grouse species: Tetrastes sewersowi and T. bonasia. Avian Research, 2024, 15(2): 100184. https://doi.org/10.1016/j.avrs.2024.100184

94

Views

1

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 December 2023
Revised: 15 May 2024
Accepted: 28 May 2024
Published: 29 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return