AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Integrating host biological and ecological variables to predict probability of haemosporidian infection in raptors

Kai GaoXuemei YangXi HuangWenhong Deng( )
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
Show Author Information

Abstract

Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases. Therefore, identifying the predictors of infection probability is necessary to understand the risk of disease outbreaks during expanding environmental perturbation. Here, we conducted a large survey based on microscopic examination and molecular analysis of haemosporidian parasite infection in raptors rescued at the Beijing Raptor Rescue Centre. Combining these data with biological and ecological variables of the raptors, we determined predictors that affect the probability of haemosporidian infection using generalized linear mixed models and multimodel inference. Our results showed that infection probability exhibited considerable variation across host species in raptors, and body mass, sex, and evolutionary history played relatively weaker roles in driving infection probability. Instead, activity pattern, age, geographic range size, migration distance, and nest type were important predictors of the probability of haemosporidian infection, and the role of each predictor differed in the three main haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon). This macro-ecological analysis will add to our understanding of host traits that influence the probability of avian haemosporidian infection and will help inform risk of emerging diseases.

References

 

Altizer, S., Bartel, R., Han, B.A., 2011. Animal migration and infectious disease risk. Science 331, 296-302.

 

Asghar, M., Hasselquist, D., Bensch, S., 2011. Are chronic avian haemosporidian infections costly in wild birds? J. Avian Biol. 42, 530-537.

 

Asghar, M., Hasselquist, D., Hansson, B., Zehtindjiev, P., Westerdahl, H., Bensch, S., 2015. Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436-438.

 

Atkinson, C.T., Samuel, M.D., 2010. Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on àpapane Himatione sanguinea. J. Avian Biol. 41, 357-366.

 

Barrow, L.N., McNew, S.M., Mitchell, N., Galen, S.C., Lutz, H.L., Skeen, H., et al., 2019. Deeply conserved susceptibility in a multi-host, multiparasite system. Ecol. Lett. 22, 987-998.

 

Bensch, S., Hellgren, O., Pérez-Tris, J., 2009. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9, 1353-1358.

 

Bensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., et al., 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. A B 267, 1583-1589.

 

Brooks, D.R., Hoberg, E.P., Boeger, W.A., Gardner, S.L., Galbreath, K.E., Herczeg, D., et al., 2014. Finding them before they find us: informatics, parasites, and environments in accelerating climate change. Comp. Parasitol. 81, 155-164.

 
Burnham, K.P., Anderson, D.R., 2002. Model Selection and Inference: A PracticalInformation-Theoretic Approach, second ed. Springer-Verlag, New York.
 

Carlson, M.L., Proudfoot, G.A., Gentile, K., Dispoto, J., WecksteinM, J.D., 2018 Haemosporidian prevalence in Northern Saw-whet Owls Aegolius acadicus is predicted by host age and average annual temperature at breeding grounds. J. Avian Biol. 49, e01817.

 

Černý, O., Votýpka, J., Svobodová M., 2011. Spatial feeding preferences of ornithophilic mosquitoes, blackflies and biting midges. Med. Vet. Entomol. 25, 104-108.

 

Clark, N., Wells, K., Dimitrov, D., Clegg, S., 2016. Co-infections and environmental conditions drive the distributions of blood parasites in wild birds. J. Anim. Ecol. 85, 1461-1470.

 

Clark, N.J., Drovetski, S.V., Voelker, G., 2020. Robust geographical determinants of infection prevalence and a contrasting latitudinal diversity gradient for haemosporidian parasites in Western Palearctic birds. Mol. Ecol. 29, 3131-3143.

 

Coon, C.A.C., Martin, L.B., 2014. Patterns of haemosporidian prevalence along a range expansion in introduced Kenyan House Sparrows Passer domesticus. J. Avian Biol. 45, 34-42.

 

Dadam, D., Robinson, R.A., Clements, A., Peach, W.J., Bennett, M., Rowcliffe, J.M., et al., 2019. Avian malaria-mediated population decline of a widespread iconic bird species. R. Soc. Open Sci. 6, 182197.

 

de Angeli Dutra, D., Fecchio, A., Martins Braga, É., Poulin, R., 2021. Migratory birds have higher prevalence and richness of avian haemosporidian parasites than residents. Int. J. Parasitol. 51, 877-882.

 

Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969-1973.

 

Ellis, V.A., Collins, M.D., Medeiros, M.C.I., Sari, E.H.R., Coffey, E.D., Dickerson R.C., et al., 2015. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites. Proc. Natl. Acad. Sci. U.S.A. 112, 11294-11299.

 

Ellis, V.A., Fecchio, A., Ricklefs, R.E., 2020. Haemosporidian parasites of Neotropical birds: causes and consequences of infection. Auk 137, 365-378.

 

Fecchio, A., Bell, J.A., Bosholn, M., Vaughan, J.A., Tkach, V.V., Lutz, H.L., et al., 2020b. An inverse latitudinal gradient in infection probability and phylogenetic diversity for Leucocytozoon blood parasites in New World birds. J. Anim. Ecol. 89, 423-435.

 

Fecchio, A., Chagas, C.R.F., Bell, J.A., Kirchgatter, K., 2020a. Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites. Acta Trop. 204, 105364.

 

Fecchio, A., Clark, N.J., Bell, J.A., Skeen, H.R., Lutz, H.L., De La Torre, G.M., et al., 2021. Global drivers of avian haemosporidian infections vary across zoogeographical regions. Global Ecol. Biogeogr. 30, 2393-2406.

 

Fecchio, A., Dias, R.I., Ferreira, T.V., Reyes, A.O., Dispoto, J.H., Weckstein, J.D., et al., 2022. Host foraging behavior and nest type influence prevalence of avian haemosporidian parasites in the Pantanal. Parasitol. Res. 121, 1407-1417.

 

Fecchio, A., Lima, M.R., Silveira, R., Braga, E.M., Marini, M.A., 2011. High prevalence of blood parasites in social birds from a Neotropical savanna in Brazil. Emu 111, 132-138.

 

Fridolfsson, A.K., Ellegren, H., 1999. A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol. 30, 116-121.

 

Ganser, C., Monadjem, A., McCleery, R.A., Ndlela, T., Wisely, S.M., 2020. Is it best on the nest? Effects of avian life-history on haemosporidian parasitism. Int. J. Parasitol. Parasites Wildl. 13, 62-71.

 

Gao, K., Zhou, B., Yang, L.X., Dong, L., Huang, X., Deng, W.H., 2021. How does circadian rhythm shape host-parasite associations? A comparative study on infection patterns in diurnal and nocturnal raptors. Diversity 13, 338.

 

Gibson, G., Torr, S.J., 1999. Visual and olfactory responses of haematophagous Diptera to host stimuli. Med. Vet. Entomol. 13, 2-23.

 

González, A.D., Matta, N.E., Ellis, V.A., Miller, E.T., Ricklefs, R.E., Gutiérrez, H.R., 2014. Mixed species flock, nest height, and elevation partially explain avian haemoparasite prevalence in Colombia. PLoS One 9, e100695.

 

Grillet, M-E., Villamizar, N.J., Cortez, J., Frontado, H.L., Escalona, M., Vivas-Martínez, S., et al., 2005. Diurnal biting periodicity of parous Simulium (Diptera: Simuliidae) vectors in the onchocerciasis Amazonian focus. Acta Trop. 94, 139-158.

 

Gupta, P., Vishnudas, C.K., Robin, V.V., Dharmarajan, G., 2020. Host phylogeny matters: examining sources of variation in infection risk by blood parasites across a tropical montane bird community in India. Parasites Vectors 13, 536.

 

Gutiérrez, J.S., Piersma, T., Thieltges, D.W., 2019. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226-1239.

 

Gutiérrez, J.S., Rakhimberdiev, E., Piersma, T., Thieltges, D.W., 2017. Migration and parasitism: habitat use, not migration distance, influences helminth species richness in Charadriiform birds. J. Biogeogr. 44, 1137-1147.

 

Hammers, M., Komdeur, J., Kingma, S.A., Hutchings, K., Fairfield, E.A., Gilroy, D.L., et al., 2016. Age-specific haemosporidian infection dynamics and survival in Seychelles Warblers. Sci. Rep. 6, 29720.

 

Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S.B.A., McClean, D., et al., 2014. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. A B 281, 20140298.

 

Hellgren, O., Pérez-Tris, J., Bensch, S., 2009. A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology 90, 2840-2849.

 

Hellgren, O., Waldenström, J., Bensch, S., 2004. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797-802.

 

Huang, X., Ellis, V.A., Jönsson, J., Bensch, S., 2018. Generalist haemosporidian parasites are better adapted to a subset of host species in a multiple host community. Mol. Ecol. 27, 4336-4346.

 

Isaksson, C., Sepil, I., Baramidze, V., Sheldon, B.C., 2013. Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol. 13, 15.

 

Jetz, W., Thomas, G., Joy, J., Hartmann, K., Mooers, A., 2012. The global diversity of birds in space and time. Nature 491, 444-448.

 

Johnson, P.T.J., de Roode, J.C., Fenton, A., 2015. Why infectious disease research needs community ecology. Science 349, 1259504.

 

Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., et al., 2008. Global trends in emerging infectious diseases. Nature 451, 990-993.

 

Julliard, R., Clavel, J., Devictor, V., Jiguet, F., Couvet, D., 2006. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237-1244.

 

Kamiya, T., O'Dwyer, K., Nakagawa, S., Poulin, R., 2014. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol. Rev. 89, 123-134.

 

Knowles, S.C.L., Palinauskas, V., Sheldon, B.C., 2010a. Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J. Evol. Biol. 23, 557-569.

 

Knowles, S.C.L., Wood, M.J., Alves, R., Wilkin, T.A., Bensch, S., Sheldon, B.C., 2010b. Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Mol. Ecol. 20, 1062-1076.

 

Koprivnikar, J., Leung, T.L.F., 2015. Flying with diverse passengers: greater richness of parasitic nematodes in migratory birds. Oikos 124, 399-405.

 

Lachish, S., Knowles, S.C.L., Alves, R., Wood, M.J., Sheldon, B.C., 2011. Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207-1216.

 

Lee, K., Martin, L., Hasselquist, D., Ricklefs, R., Wikelski, M., 2006. Contrasting adaptive immune defenses and blood parasite prevalence in closely related Passer sparrows. Oecologia 150, 383-392.

 

Lee, M.Y., Hong, Y.J., Park, S.K., Kim, Y.J., Choi, T.Y., Lee, H., et al., 2008. Application of two complementary molecular sexing methods for East Asian bird species. Genes Genomics 30, 365-372.

 
Lehane, M., 2005. The Biology of Blood-Sucking in Insects, second ed. CambridgeUniversity Press, Cambridge.
 

Leung, T.L.F., Koprivnikar, J., 2016. Nematode parasite diversity in birds: the role of host ecology, life history, and migration. J. Anim. Ecol. 85, 1471-1480.

 

Lutz, H.L., Hochachka, W.M., Engel, J.I., Bell, J.A., Tkach, V.V., Bates, J.M., et al., 2015. Parasite prevalence corresponds to host life history in a diverse assemblage of Afrotropical bids and haemosporidian parasites. PLoS One 10, e0121254.

 
Marquardt, W.C., Demaree, R.S., Grieve, R.B., 2000. Parasitology and Vector Biology, second ed. Academic Press, Cambridge.
 

Marzal, A., de Lope, F., Navarro, C., Møller, A.P., 2005. Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142, 541-545.

 

Matthews, A.E., Ellis, V.A., Hanson, A.A., Roberts, J.R., Ricklefs, R.E., Collins, M.D., 2016. Avian haemosporidian prevalence and its relationship to host life histories in eastern Tennessee. J. Ornithol. 157, 533-548.

 

McClure, K.M., Fleischer, R.C., Kilpatrick, A.M., 2020. The role of native and introduced birds in transmission of avian malaria in Hawaii. Ecology 101, e03038.

 

McCurdy, D.G., Shutler, D., Mullie, A., Forbes, M.R., 1998. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos 82, 303-312.

 

McNew, S.M., Barrow, L.N., Williamson, J.L., Galen, S.C., Skeen, H.R., DuBay, S.G., et al., 2021. Contrasting drivers of diversity in hosts and parasites across the tropical Andes. Proc. Natl. Acad. Sci. U.S.A. 118, e2010714118.

 

Merino, S., Moreno, J., Sanz, J.J., Arriero, E., 2000. Are avian blood parasites pathogenic in the wild? A medication experiment in Blue Tits (Parus caeruleus). Proc. R. Soc. B 267, 2507-2510.

 

Olalla‐Tárraga, M. Á., González-Suárez, M., Bernardo-Madrid, R., Revilla, E., Villalobos, F., 2016. Contrasting evidence of phylogenetic trophic niche conservatism in mammals worldwide. J. Biogeogr. 44, 99-110.

 

Olsson-Pons, S., Clark, N.J., Ishtiaq, F., Clegg, S.M., 2015. Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J. Anim. Ecol. 84, 985-998.

 

Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884.

 

Pérez-Rodríguez, A., Fernández-González, S., de la Hera, I., Pérez-Tris, J., 2013. Finding the appropriate variables to model the distribution of vector-borne parasites with different environmental preferences: climate is not enough. Global Change Biol. 19, 3245-3253.

 

Podmokła, E., Dubiec, A., Drobniak, S.M., Arct, A., Gustafsson, L., Cichoń, M., 2014. Determinants of prevalence and intensity of infection with malaria parasites in the Blue Tit. J. Ornithol. 155, 721-727.

 

Popescu, M., Trychta, M., Jackson, E., Selman, J., Houston, A., Collins, M., 2020. Avian haemosporidian prevalence and its relationship to host traits in Western Tennessee. J. Ornithol. 161, 995-1010.

 
Poulin, R., 2011. Evolutionary Ecology of Parasites. Princeton University Press, Princeton.
 
R Core Team, 2021. R: A Language and Environment for Statistical Computing. RFoundation for Statistical Computing, Vienna.
 

Revell, L.J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223.

 

Rivero, A., Gandon, S., 2018. Evolutionary ecology of avian malaria: past to present. Trends Parasitol. 34, 712-726.

 

Rodriguez, M.D., Doherty, P.F., Piaggio, A.J., Huyvaert, K.P., 2021. Sex and nest type influence avian blood parasite prevalence in a high-elevation bird community. Parasites Vectors 14, 145.

 

Rodríguez-Hernández, K., Álvarez-Mendizábal, P., Chapa-Vargas, L., Escobar, F., GonzálezGarcía, F., Santiago-Alarcon, D., 2021. Haemosporidian prevalence, parasitaemia and aggregation in relation to avian assemblage life history traits at different elevations. Int. J. Parasitol. 51, 365-378.

 

Ruhs, E.C., Martin, L.B., Downs, C.J., 2020. The impacts of body mass on immune cell concentrations in birds. Proc. R. Soc. B 287, 20200655.

 

Santiago-Alarcon, D., Palinauskas, V., Schaefer, H.M., 2012. Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol. Rev. 87, 928-964.

 

Schultz, A., Underhill, L.G., Earlé, R.A., Underhill, G., 2010. Infection prevalence and absence of positive correlation between avian haemosporidian parasites, mass and body condition in the Cape Weaver Ploceus capensis. Ostrich 81, 69-76.

 
Scott, D.E., 2016. Raptor Medicine, Surgery and Rehabilitation, second ed. CABI Press, Wallingford.
 

Sorensen, M.C., Dixit, T., Kardynal, K.J., Newton, J., Hobson, K.A., Bensch, S., et al., 2019. Migration distance does not predict blood parasitism in a migratory songbird. Ecol. Evol. 9, 8294-8304.

 

Tella, J.L., Blanco, G., Forero, M.G., Gajón, Á., Donázar, J.A., Hiraldo, F., 1999. Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc. Natl. Acad. Sci. U.S.A. 96, 1785-1789.

 
Valkiūnas, G., 2005. Avian Malaria Parasites and Other Haemosporidian, second ed. CRCPress, Boca Raton.
 

Valkiūnas, G., Iezhova, T.A., Križanauskienė, A., Palinauskas, V., Sehgal, R.N.M., Bensch, S., 2008. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 94, 1395-1401.

 

Vilela, B., Villalobos, F., 2015. LetsR: A new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229-1234.

 

Wang, Y.P., Song, Y.F., Zhong, Y.Q., Chen, C.W., Zhao, Y.H., Zeng, D., et al., 2021. A dataset on the life-history and ecological traits of Chinese birds. Biodivers. Sci. 29, 1149-1153.

 

Williams, M.A., Faiad, S., Claar, D.C., French, B., Leslie, K.L., Oven, E., et al., 2022. Life history mediates the association between parasite abundance and geographic features. J. Anim. Ecol. 91, 996-1009.

 

Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M., Jetz, W., 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027.

 

Wood, M.J., Cosgrove, C.L., Wilkin, T.A., Knowles, S.C.L., Day, K.P., Sheldon, B.C., 2007. Within-population variation in prevalence and lineage distribution of avian malaria in Blue Tits, Cyanistes caeruleus. Mol. Ecol. 16, 3263-3273.

 

Xie, S.L., Lu, F., Cao, L., Zhou, W.Q., Ouyang, Z.Y., 2016. Multi-scale factors influencing the characteristics of avian communities in urban parks across Beijing during the breeding season. Sci. Rep. 6, 29350.

 

Yang, L.X., Zhou, B., Huang, X., Gao, K., Chen, Z.R., Dai, C., et al., 2022. A survey of sex ratios of raptors at a rescue center in China. J. Raptor Res. 56, 237-244.

Avian Research
Article number: 100185
Cite this article:
Gao K, Yang X, Huang X, et al. Integrating host biological and ecological variables to predict probability of haemosporidian infection in raptors. Avian Research, 2024, 15(2): 100185. https://doi.org/10.1016/j.avrs.2024.100185

112

Views

1

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 25 January 2024
Revised: 21 May 2024
Accepted: 22 May 2024
Published: 31 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return