AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Weak influence of natural vegetation in urban green spaces compared to agricultural ecosystems on House Martin populations: Insights from nationwide citizen science data in the Czech Republic

Denisa Dvořáková( )Jan ŠipošJosef Suchomel
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
Show Author Information

Abstract

The House Martin (Delichon urbicum) is a common farmland bird species in the European landscape, yet its population numbers are currently in decline. However, it is not yet sufficiently explained why this long-term decline occurs. To fill this gap in our knowledge, we investigated how land cover composition affects the abundance of House Martins on the landscape scale by using nationwide citizen science data. Utilizing a generalised linear mixed-effect model (GLMM), we evaluated 12,094 records from the Czech Republic spanning 2009–2017. Our analysis underscores the significance of land cover type in shaping House Martin abundance. More specifically, our results indicate that within agricultural land covers "naturally managed arable lands" exhibited significant positive effect, while forests, orchards, and vineyards were deemed less favourable for House Martin populations. Within urban land covers, we found a clear distinction in the impact on House Martin populations, with a positive effect observed in urban infrastructure, development areas, and post-industrial sites (i.e., UrbanAreas), while an indifferent impact was noted within urban green spaces and landscaped areas (i.e., GreenUrban). Notably, our findings suggest that the simple spatial, age, and species structure typical of forests in Europe, and similarly, the uniform structure of parks and gardens, may be responsible for the decline in the abundance of the House Martin. We advocate for the preservation or enhancement of urban greenery, expansion of natural vegetation in rural areas and adoption of ecological management practices in orchards and vineyards to mitigate further declines in House Martin populations.

References

 

Alberti, M., 2005. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 28, 168–192. https://doi.org/10.1177/0160017605275160.

 

Alberts, J.M., Sullivan, S.M. P, Kautza, A., 2013. Riparian swallows as integrators of landscape change in a multiuse river system: Implications for aquatic-to-terrestrial transfers of contaminants. Sci. Total Environ. 463–464, 42–50. https://doi.org/10.1016/j.scitotenv.2013.05.065.

 
Arcdata Praha, 2016. ArcČR® 500: Digitální vektorová geografická databáze České republiky. In: ArcČR® 500 Verze 3, vol. 3. https://www.arcdata.cz/produkty/geograficka-data/arccr-4-0. (Accessed 27 December 2018).
 

Assandri, G., Bogliani, G., Pedrini, P., Brambilla, M., 2017. Insectivorous birds as 'non-traditional' flagship species in vineyards: Applying a neglected conservation paradigm to agricultural systems. Ecol. Indicat. 80, 275–285. https://doi.org/10.1016/j.ecolind.2017.05.012.

 

Atkinson, P.W., Fuller, R.J., Vickery, J.A., Conway, G.J., Tallowin, J.R.B., Smith, R.E.N., et al., 2005. Influence of agricultural management, sward structure and food resources on grassland field use by birds in lowland England: Factors influencing field use by grassland birds. J. Appl. Ecol. 42, 932–942. https://doi.org/10.1111/j.1365-2664.2005.01070.x.

 
Bartoń, K., 2022. MuMIn: Multi-Model Inference. Version 1.46.0. https://CRAN.R-project.org/package=MuMIn.
 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01.

 

Beauchamp, G., 2015. Visual obstruction and vigilance: a natural experiment. J. Avian Biol. 46, 476–481. https://doi.org/10.1111/jav.00612.

 

Bellavance, V., Bélisle, M., Savage, J., Pelletier, F., Garant, D., 2018. Influence of agricultural intensification on prey availability and nestling diet in Tree Swallows (Tachycineta bicolor). Can. J. Zool. 96, 1053–1065. https://doi.org/10.1139/cjz-2017-0229.

 

Boukhemza-Zemmouri, N., Farhi, Y., Mohamed Sahnoun, A., Boukhemza, M., 2013. Diet composition and prey choice by the House Martin Delichon urbica (Aves: Hirundinidae) during the breeding period in Kabylia, Algeria. Ital. J. Zool. 80, 117–124. https://doi.org/10.1080/11250003.2012.733138.

 

Bouldin, L.E., 1968. The population of the House Martin Delichon urbica in East Lancashire. Hous. Theor. Soc. 15, 135–146. https://doi.org/10.1080/00063656809476193.

 

Boynton, C.K., Mahony, N.A., Williams, T.D., 2020. Barn Swallow (Hirundo rustica) fledglings use crop habitat more frequently in relation to its availability than pasture and other habitat types. Condor 122, duz067. https://doi.org/10.1093/condor/duz067.

 
Braubach, M., Egorov, A., Mudu, P., Wolf, T., Ward Thompson, C., Martuzzi, M., 2017. Effects of urban green space on environmental health, equity and resilience. In: Kabisch, N., Korn, H., Stadler, J., Bonn, A. (Eds. ), Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Springer International Publishing, Cham pp. 187–205. https://doi.org/10.1007/978-3-319-56091-5_1.
 

Brlík, V., Šilarová, E., Škorpilová, J., Alonso, H., Anton, M., Aunins, A., et al., 2021. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci Data 8, 21. https://doi.org/10.1038/s41597-021-00804-2.

 

Bruggisser, O.T., Schmidt-Entling, M.H., Bacher, S., 2010. Effects of vineyard management on biodiversity at three trophic levels. Biol. Conserv. 143, 1521–1528. https://doi.org/10.1016/j.biocon.2010.03.034.

 

Bryant, D.M., 2008. Breeding biology of house martins Delichon urbica in relation to aerial insect abundance. Ibis 117, 180–216. https://doi.org/10.1111/j.1474-919X.1975.tb04206.x.

 

Bulgarella, M., Quiroga, M.A., Heimpel, G.E., 2019. Additive negative effects of Philornis nest parasitism on small and declining Neotropical bird populations. Bird Conserv. Int. 29, 339–360. https://doi.org/10.1017/S0959270918000291.

 

Burns, F., Eaton, M.A., Burfield, I.J., Klvaňová, A., Šilarová, E., Staneva, A., et al., 2021. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 11, 16647–16660. https://doi.org/10.1002/ece3.8282.

 

Cade, B.S., 2015. Model averaging and muddled multimodel inferences Ecology 96, 2370–2382. https://doi.org/10.1890/14-1639.1.

 

Callaghan, C.T., Poore, A.G.B., Hofmann, M., Roberts, C.J., Pereira, H.M., 2021. Large-bodied birds are over-represented in unstructured citizen science data. Sci. Rep. 11, 19073. https://doi.org/10.1038/s41598-021-98584-7.

 
Cepák, J., 2013. Atlas Migrace Ptákċ České a Slovenské Republiky. Aventium, Praha.
 

Cherkaoui, I., Hanane, S., 2011. Status and breeding biology of Northern Lapwings Vanellus vanellus in the Gharb coastal wetlands of northern Morocco. Wader Study Group Bull. 118, 49–54.

 

Claro, H., Rossi, R., Hannibal, W., 2020. Bird communities in urban habitat: the importance of vegetation in city squares. Rev. Sap. 9, 201–217.

 

Cody, M.L., 1985. Habitat Selection in Birds. Academic Press, Orlando.

 

Collias, N.E., Collias, E.C., 1984. Nest Building and Bird Behavior. Princeton University Press, Princeton.

 

Cramp, S., Gooders, J., 1967. The return of the house martin. London Bird Rep. 31, 93–98.

 
CSO (the Czech Society for Ornithology), 2009–2017. Faunistická databáze. Pozorování. https://www.birds.cz/avif/. (Accessed 6 May 2018).
 
CZSO (the Czech Statistical Office), 2009–2017. Územnc analytické podklady. Datové Vrstvy Pro GIS 2017. https://www.czso.cz/csu/czso/csu_a_uzemne_analyticke_podklady. (Accessed 26 May 2018).
 
CSO, 2020. Jednotný program sčítání ptáků. Indexy a trendy 2021 - jiřička obecná. https://jpsp.birds.cz/vysledky.php?taxon=694. (Accessed 3 Mar 2022).
 

Diener, A., Mudu, P., 2021. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Sci. Total Environ. 796, 148605. https://doi.org/10.1016/j.scitotenv.2021.148605.

 

Dolenec, Z., Dolenec, P., 2011. Spring migration characteristics of the House Martin, Delichon urbica (Aves: Hirundinidae) in Croatia: A response to climate change? Zoologia 28, 139–141. https://doi.org/10.1590/S1984-46702011000100020.

 

Dreelin, R.A., Shipley, J.R., Winkler, D.W., 2018. Flight behavior of individual aerial insectivores revealed by novel altitudinal dataloggers. Front. Ecol. Evol. 6, 182. https://doi.org/10.3389/fevo.2018.00182.

 

Dvořáková, D., Šipoš, J., Suchomel, J., 2023. Impact of agricultural landscape structure on the patterns of bird species diversity at a regional scale. Avian Res. 14, 100147. https://doi.org/10.1016/j.avrs.2023.100147.

 

Elkins, N., 2010. Weather and Bird Behaviour. Bloomsbury Publishing, London.

 
Esri, 2019. ArcGIS Desktop. Version 10.6.1. Environmental Systems Research Institute, Redlands: CA. https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview.
 
Esri, 2021. ArcGIS Pro. Version 2.9.2. Environmental Systems Research Institute, Redlands: CA. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.
 
European Environment Agency, 2019. CORINE Land Cover 2012 (raster 100 m), Europe, 6-yearly, version 2020_20u1, May 2020. https://doi.org/10.2909/A84AE124-C5C5-4577-8E10-511BFE55CC0D.
 

Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., et al., 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agr. Ecosyst. Environ. 200, 219–234. https://doi.org/10.1016/j.agee.2014.11.018.

 

Forrest, J.R., 2016. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002.

 

Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression, third ed. SAGE, Los Angeles.

 

Fretwell, S.D., Lucas, H.L., 1969. On territorial behavior and other factors influencing habitat distribution in birds: I. Theoretical development. Acta Biotheor. 19, 16–36. https://doi.org/10.1007/BF01601953.

 

Garrett, D.R., Pelletier, F., Garant, D., Bélisle, M., 2022a. Combined influence of food availability and agricultural intensification on a declining aerial insectivore. Ecol. Monogr. 92, e1518. https://doi.org/10.1002/ecm.1518.

 

Garrett, D.R., Pelletier, F., Garant, D., Bélisle, M., 2022b. Negative effects of agricultural intensification on the food provisioning rate of a declining aerial insectivore. Ecosphere 13, e4227. https://doi.org/10.1002/ecs2.4227.

 

Gaston, K.J., 2011. Common ecology. BioScience 61, 354–362. https://doi.org/10.1525/bio.2011.61.5.4.

 

Gross, M., 2015. Europe's bird populations in decline. Curr. Biol. 25, R483-R485. https://doi.org/10.1016/j.cub.2015.05.057.

 

Grüebler, M.U., Korner-Nievergelt, F., Von Hirschheydt, J., 2010. The reproductive benefits of livestock farming in barn swallows Hirundo rustica: quality of nest site or foraging habitat? Benefits of livestock farming. J. Appl. Ecol. 47, 1340–1347. https://doi.org/10.1111/j.1365-2664.2010.01873.x.

 

Guilherme, J.L., Miguel Pereira, H., 2013. Adaptation of bird communities to farmland abandonment in a mountain landscape. PLoS One 8, e73619. https://doi.org/10.1371/journal.pone.0073619.

 

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., et al., 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809. https://doi.org/10.1371/journal.pone.0185809.

 

Hamilton, N.E., Ferry, M., 2018. ggtern: Ternary Diagrams Using ggplot2. J. Stat. Softw. 87, 1–17. https://doi.org/10.18637/jss.v087.c03.

 
Hauner, M., Blazek, M., Osborne, R.H., Carter, F.W., Zeman, Z.A.B., Auty, R., 2024. Czech Republic. Encyclopedia Britannica. https://www.britannica.com/place/Czech-Republic. (Accessed 27 April 2024).
 

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al., 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748. https://doi.org/10.1371/journal.pone.0169748.

 

Hertzog, L.R., Frank, C., Klimek, S., Röder, N., Böhner, H.G.S., Kamp, J., 2021. Model-based integration of citizen science data from disparate sources increases the precision of bird population trends. Divers. Distrib. 27, 1106–1119. https://doi.org/10.1111/ddi.13259.

 

Hildén, O., 1965. Habitat selection in birds: A review. Ann. Zool. Fenn. 2, 53–75.

 

Imlay, T.L., Leonard, M.L., 2019. A review of the threats to adult survival for swallows (Family: Hirundinidae). Bird Study 66, 251–263. https://doi.org/10.1080/00063657.2019.1655527.

 

Inger, R., Gregory, R., Duffy, J.P., Stott, I., Voříšek, P., Gaston, K.J., 2015. Common European birds are declining rapidly while less abundant species' numbers are rising. Ecol. Lett. 18, 28–36. https://doi.org/10.1111/ele.12387.

 
Isaksson, C., 2018. Impact of urbanization on birds. In: Tietze, D.T. (Ed. ), Bird Species. Springer International Publishing, Cham pp. 235–257. https://doi.org/10.1007/978-3-319-91689-7_13.
 
IUCN, 2016. Delichon urbicum: BirdLife International. The IUCN Red List of Threatened Species, p. 2017. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T103811886A118748864.en.
 

Izakovičová, Z., Mederly, P., Petrovič, F., 2017. Long-term land use changes driven by urbanisation and their environmental effects (example of Trnava City, Slovakia). Sustainability 9, 1553. https://doi.org/10.3390/su9091553.

 

James Reynolds, S., Ibáñez-Álamo, J.D., Sumasgutner, P., Mainwaring, M.C., 2019. Urbanisation and nest building in birds: a review of threats and opportunities. J. Ornithol. 160, 841–860. https://doi.org/10.1007/s10336-019-01657-8.

 

Jasso, L., 2017. Jiřička obecná (Delichon urbicum) kořistí ťuhýka obecného (Lanius collurio). Sylvia 2017, 65–69.

 

Johnston, A., Moran, N., Musgrove, A., Fink, D., Baillie, S.R., 2020. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927. https://doi.org/10.1016/j.ecolmodel.2019.108927.

 

Jones, E.L., Leather, S.R., 2012. Invertebrates in urban areas: A review. Eur. J. Entomol. 109, 463–478. https://doi.org/10.14411/eje.2012.060.

 

Kettel, E.F., Woodward, I.D., Balmer, D.E., Noble, D.G., 2021. Using citizen science to assess drivers of Common House Martin Delichon urbicum breeding performance. Ibis 163, 366–379. https://doi.org/10.1111/ibi.12888.

 

Kopij, G., 2000. Diet of swifts (Apodidae) and swallows (Hirundinidae) during the breeding season in South African grassland. Acta Ornithol. 35, 203–206. https://doi.org/10.3161/068.035.0201.

 

Leveau, L.M., Ruggiero, A., Matthews, T.J., Isabel Bellocq, M., 2019. A global consistent positive effect of urban green area size on bird richness. Avian Res, 10, 30. https://doi.org/10.1186/s40657-019-0168-3.

 

Linhart, C., Niedrist, G.H., Nagler, M., Nagrani, R., Temml, V., Bardelli, T., et al., 2019. Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards. Environ. Sci. Eur. 31, 28. https://doi.org/10.1186/s12302-019-0206-0.

 

Loss, S.R., Will, T., Marra, P.P., 2013. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396. https://doi.org/10.1038/ncomms2380.

 

Lovette, I.J., Fitzpatrick, J.W., 2016. Cornell Lab of Ornithology's Handbook of Bird Biology, Third edition. John Wiley & Sons, Inc, Chichester, West Sussex.

 

Manning, D.W.P., Sullivan, S.M.P., 2021. Conservation across aquatic-terrestrial boundaries: Linking continental-scale water quality to emergent aquatic insects and declining aerial insectivorous birds. Front. Ecol. Evol. 9, 633160. https://doi.org/10.3389/fevo.2021.633160.

 

McClure, C.J.W., Rolek, B.W., McDonald, K., Hill, G.E., 2012. Climate change and the decline of a once common bird: Climate change and blackbird decline. Ecol. Evol. 2, 370–378. https://doi.org/10.1002/ece3.95.

 

Mikusiński, G., Roberge, J-M., Fuller, R.J., 2018. Ecology and Conservation of Forest Birds. Cambridge University Press, Cambridge.

 

Møller, A.P., Czeszczewik, D., Flensted-Jensen, E., Erritzøe, J., Krams, I., Laursen, K., et al., 2021. Abundance of insects and aerial insectivorous birds in relation to pesticide and fertilizer use. Avian Res. 12, 43. https://doi.org/10.1186/s40657-021-00278-1.

 

Murgui, E., 2002. Breeding habitat selection in the House Martin Delichon urbica in the city of Valencia (Spain). Acta Ornithol. 37, 75–83. https://doi.org/10.3161/068.037.0203.

 
NASA Earth Observations, 2009–2017. Normalized difference vegetation index. Vegetation Index (1 Month - Terra/MODIS). NASA. https://neo.gsfc.nasa.gov/view.php?datasetId=MOD_NDVI_M. (Accessed 8 November 2018).
 

Newman, J.R., Novakova, E., McClave, J.T., 1985. The influence of industrial air emissions on the nesting ecology of the house martin Delichon urbica in Czechoslovakia. Biol. Conserv. 31, 229–248. https://doi.org/10.1016/0006-3207(85)90069-2.

 

Paiola, A., Assandri, G., Brambilla, M., Zottini, M., Pedrini, P., Nascimbene, J., 2020. Exploring the potential of vineyards for biodiversity conservation and delivery of biodiversity-mediated ecosystem services: A global-scale systematic review. Sci. Total Environ. 706, 135839. https://doi.org/10.1016/j.scitotenv.2019.135839.

 

Pedersen, C., Krøgli, S.O., 2017. The effect of land type diversity and spatial heterogeneity on farmland birds in Norway. Ecol. Ind. 75, 155–163. https://doi.org/10.1016/j.ecolind.2016.12.030.

 

Pellissier, V., Cohen, M., Boulay, A., Clergeau, P., 2012. Birds are also sensitive to landscape composition and configuration within the city centre. Landscape Urban Plan. 104, 181–188. https://doi.org/10.1016/j.landurbplan.2011.10.011.

 

Piersma, T., 2013. Timing, nest site selection and multiple breeding in House Martins: Age-related variation and the preference for self-built mud nests. Ardea 101, 23–32. https://doi.org/10.5253/078.101.0103.

 

Ptaszyk, J., 2001. Nesting of the House Martin Delichon urbica in the city of Poznań (1976–1978 and 1982–1989). Acta Ornithol. 36, 135–142. https://doi.org/10.3161/068.036.0206.

 

Pykal, J., Mikuláš, I., Vlček, J., Volf, O., 2021. Rozšíření a odhad početnosti chřástala polního (Crex crex) v České republice v roce 2020 a dlouhodobé trendy početnosti ve vybraných oblastech. Sylvia 57, 3–19.

 
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.
 

Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000: Global Agricultural Lands in 2000. Global Biogeochem. Cy. 22, GB1003. https://doi.org/10.1029/2007GB002952.

 

Reif, J., Hanzelka, J., 2016. Grassland winners and arable land losers: The effects of post-totalitarian land use changes on long-term population trends of farmland birds. Agr. Ecosyst. Environ. 232, 208–217. https://doi.org/10.1016/j.agee.2016.08.007.

 

Richard, F-J., Southern, I., Gigauri, M., Bellini, G., Rojas, O., Runde, A., 2021. Warning on nine pollutants and their effects on avian communities. Global Ecol. Conserv. 32, e01898. https://doi.org/10.1016/j.gecco.2021.e01898.

 

Robinson, R.A., Wilson, J.D., Crick, H.Q.P., 2001. The importance of arable habitat for farmland birds in grassland landscapes: Arable pockets and bird numbers. J. Appl. Ecol. 38, 1059–1069. https://doi.org/10.1046/j.1365-2664.2001.00654.x.

 

Sánchez-Bayo, F., Wyckhuys, K.A.G., 2019. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020.

 

Schlesinger, M.D., Manley, P.N., Holyoak, M., 2008. Distinguishing stressors acting on land bird communities in an urbanizing environment. Ecology 89, 2302–2314. https://doi.org/10.1890/07-0256.1.

 

Schrauth, F., Wink, M., 2018. Changes in species composition of birds and declining number of breeding territories over 40 years in a nature conservation area in Southwest Germany. Diversity 10, 97. https://doi.org/10.3390/d10030097.

 

Shen, F-Y., Ding, T-S., Tsai, J-S., 2023. Comparing avian species richness estimates from structured and semi-structured citizen science data. Sci. Rep. 13, 1214. https://doi.org/10.1038/s41598-023-28064-7.

 

Shortall, C.R., Moore, A., Smith, E., Hall, M.J., Woiwod, I.P., Harrington, R., 2009. Long-term changes in the abundance of flying insects. Insect Conserv. Divers. 2, 251–260. https://doi.org/10.1111/j.1752-4598.2009.00062.x.

 

Silva, C.P., García, C.E., Estay, S.A., Barbosa, O., 2015. Bird richness and abundance in response to urban form in a Latin American City: Valdivia, Chile as a case study. PLoS One 10, e0138120. https://doi.org/10.1371/journal.pone.0138120.

 

Sisterson, M.S., Dwyer, D.P., Uchima, S.Y., 2020. Insect diversity in vineyards, almond orchards, olive orchards, alfalfa fields, and pastures in the San Joaquin Valley of California. J. Insect Conserv. 24, 765–777. https://doi.org/10.1007/s10841-020-00250-2.

 

Šálek, M., Kalinová, K., Daňková, R., Grill, S., Żmihorski, M., 2021. Reduced diversity of farmland birds in homogenized agricultural landscape: A cross-border comparison over the former Iron Curtain. Agr. Ecosyst. Environ. 321, 107628. https://doi.org/10.1016/j.agee.2021.107628.

 

Šálek, M., Mayer, M., 2022. Farmstead modernization adversely affects farmland birds. J. Appl. Ecol. 60, 101–110. https://doi.org/10.1111/1365-2664.14314.

 

Šťastný, K., Bejček, V., Mikuláš, I., Telecký, T., 2021. Atlas Hnízdního Rozšíření Ptákċ V České Republice 2014–2017. Aventinum, Praha.

 

Šťastný, K., Hudec, K., 2011. Ptáci = Aves, Díl 3/1. Přepracované a Doplněné Vydání. Academia, Praha.

 

Stenroth, K., Polvi, L.E., Fältström, E., Jonsson, M., 2015. Land-use effects on terrestrial consumers through changed size structure of aquatic insects. Freshw. Biol. 60, 136–149. https://doi.org/10.1111/fwb.12476.

 

Sullivan, S.M.P., Corra, J.W., Hayes, J.T., 2021. Urbanization mediates the effects of water quality and climate on a model aerial insectivorous bird. Ecol. Monogr. 91, e01442. https://doi.org/10.1002/ecm.1442.

 

Tomás, G., Martín-Gálvez, D., Ruiz-Rodríguez, M., Soler, J.J., 2017. Intraspecific avian brood parasites avoid host nests infested by ectoparasites. J. Ornithol. 158, 561–567. https://doi.org/10.1007/s10336-016-1409-4.

 

Tsikalas, S.G., Butler, D.R., 2015. Geomorphic impacts of mud-nesting swallows in Central Texas. Phys. Geogr. 36, 239–253. https://doi.org/10.1080/02723646.2015.1026181.

 

Tuanmu, M-N., Jetz, W., 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling: Consensus land cover. Global Ecol. Biogeogr. 23, 1031–1045. https://doi.org/10.1111/geb.12182.

 

Tuanmu, M-N., Jetz, W., 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling: Global habitat heterogeneity. Global Ecol. Biogeogr. 24, 1329–1339. https://doi.org/10.1111/geb.12365.

 

Turner, A., 1982. Counts of aerial-feeding birds in relation to pollution levels. Bird Study 29, 221–226. https://doi.org/10.1080/00063658209476762.

 

Turner, A., Rose, C., 1989. A Handbook to the Swallows and Martins of the World. Christopher Helm, London Bromley.

 

Uesugi, A., Murakami, M., 2007. Do seasonally fluctuating aquatic subsidies influence the distribution pattern of birds between riparian and upland forests? Ecol. Res. 22, 274–281. https://doi.org/10.1007/s11284-006-0028-6.

 

Urban, M.C., Skelly, D.K., Burchsted, D., Price, W., Lowry, S., 2006. Stream communities across a rural-urban landscape gradient. Divers. Distrib. 12, 337–350. https://doi.org/10.1111/j.1366-9516.2005.00226.x.

 
Viktora, L., 2020. Metodika Registrace Hnízd Jiřička Obecné (Delichon urbicum). Česká Společnost Ornitologická. https://www.birdlife.cz/wp-content/uploads/2020/02/Metodika-registraci-hnizdist-jiricky-obecne.pdf. (Accessed 24 May 2022).
 

Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., Stopak, D., 2021. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. U.S.A. 118, e2023989118. https://doi.org/10.1073/pnas.2023989118.

 

Zámečník, V., 2013. Metodická Příručka pro Praktickou Ochranu ptáků v Zemědělské Krajině: Metodika AOPK ČR. Agentura Ochrany Přírody a Krajiny ČR. Praha.

 

Žibret, G., Gosar, M., Miler, M., Alijagić, J., 2018. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. Land Degrad. Dev. 29, 4457–4470. https://doi.org/10.1002/ldr.3198.

Avian Research
Article number: 100186
Cite this article:
Dvořáková D, Šipoš J, Suchomel J. Weak influence of natural vegetation in urban green spaces compared to agricultural ecosystems on House Martin populations: Insights from nationwide citizen science data in the Czech Republic. Avian Research, 2024, 15(2): 100186. https://doi.org/10.1016/j.avrs.2024.100186

116

Views

15

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 March 2024
Revised: 24 May 2024
Accepted: 28 May 2024
Published: 01 June 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return