AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Changes in the adult sex ratio of six duck species breeding populations over two decades

Monika Homolkováa( )Petr MusilaDiego Pavón-JordánbDorota GajdošováaZuzana MusilováaŠárka NeužilováaJan Zouhara,c
Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Prague – Suchdol, Czech Republic
Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), PO Box 5685 Torgarden, Trondheim, N-7485, Norway
Department of Econometrics, Faculty of Informatics and Statistics, University of Economics, nám. W. Churchilla 4, CZ-130 67, Prague 3, Czech Republic
Show Author Information

Abstract

Despite all efforts, long-term changes in the adult sex ratios of breeding duck populations are still unclear; this uncertainty is especially true for male-bias populations, which are often under the scrutiny of researchers lacking convenient results for the active protection of endangered species. Species with male-bias populations are usually strongly affected by a decline in population size that leads to a higher extinction risk. In this study, we examined our long-term data of the abundance of breeding populations in six duck species (Mallard Anas platyrhynchos, Gadwall Mareca strepera, Red-crested Pochard Netta rufina, Common Pochard Aythya ferina, Tufted Duck Aythya fuligula, and Common Goldeneye Bucephala clangula) from fishponds in South Bohemia, Czechia, between 2004 and 2022. This evidence was used to assess long-term changes in the adult sex ratio in these breeding populations and investigate the possible effects of the NAO index (North Atlantic Oscillation index) on them, indicating climate conditions in winter. We determined a long-term decrease of the proportion of females in the breeding season in two of the six examined species: Common Pochard and Red-crested Pochard, which is driven by the long-term increase in the number of males in contrast to the decreasing or stable number of females likely caused by different migration behaviours between females and males. In the case of Common Pochard, in breeding populations, we estimated 60–65% of males in the early 2000s rising to 75–80% in the early 2020s. However, we establish no significant effects linked to climate conditions of the previous winter in these species as a crucial cause of the changes of the proportion of females in the breeding population.

References

 

Adam, M., Musilová, Z., Musil, P., Zouhar, J., Romportl, D., 2015. Long-term changes in habitat selection of wintering waterbirds: high importance of cold weather refuge sites. Acta Ornithol. 50, 127–138. https://doi.org/10.3161/00016454AO2015.50.2.001.

 

Alves, J.A., Gunnarsson, T.G., Potts, P.M., Sutherland, W.J., Gill, J.A., 2013. Sex-biases in distribution and resource use at different spatial scales in a migratory shorebird. Ethol. Ecol. Evol. 3, 1079–1090. https://doi.org/10.1002/ece3.503.

 
Allee, W.C., Park, O., Emerson, A.E., Park, T., Schmidt, K.P., 1949. Principles of Animal Ecology, No. Edn 1. WB Saundere Co. Ltd.
 

Baastrup-Spohr, L., Iversen, L.L., Dahl-Nielsen, J., Sand-Jensen, K., 2013. Seventy years of changes in the abundance of Danish charophytes. Freshw. Biol. 58, 1682–1693. https://doi.org/10.1111/fwb.12159.

 
Baldassarre, G.A., Bolen, E.G., 1994. Waterfowl Ecology and Management. John Wiley and Sons Inc, New York.
 

Blums, P., Mednis, A., 1996. Secondary sex ratio in Anatinae. Auk 113, 505–511. https://doi.org/10.2307/4088920.

 

Bibby, C.J., Burgess, N.D., Hill, D.A., 2000. Bird Census Techniques. Academic Press, London.

 
BirdLife International, H.B.W., 2017. Bird Species Distribution Maps of the World. Version 7.0. http://datazone.birdlife.org/species/requestdis.
 

Bize, P., Roulin, A., Tella, J.L., Richner, H., 2005. Female-biased mortality in experimentally parasitized Alpine Swift Apus melba nestlings. Funct. Ecol. 19, 405–413.

 

Brzeziński, M., Żmihorski, M., Nieoczym, M., Wilniewczyc, P., Zalewski, A., 2020. The expansion wave of an invasive predator leaves declining waterbird populations behind. Divers. Distrib. 26, 138–150. https://doi.org/10.1111/ddi.13003.

 

Brides, K., Wood, K., Hearn, R., Fijen, T.P., 2017. Changes in the sex ratio of the common pochard Aythya ferina in Europe and North africa. Wildfowl 67, 100–112.

 

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400. https://doi.org/10.32614/RJ-2017-066.

 

Calder, W.I., 1974. Consequences of body-size for avian energetics. Avian Energ. 86-151.

 

Carbone, C., Owen, M., 1995. Differential migration of the sexes of Pochard Aythya ferina: results from a European survey. Wildfowl 46, 99–108.

 

Clausen, K.K., Dalby, L., Sunde, P., Christensen, T.K., Egelund, B., Fox, A.D., 2013. Seasonal variation in Eurasian wigeon Anas penelope sex and age ratios from hunter-based surveys. J. Ornithol. 154, 769–774.

 

Cooch, E., Lank, D., Robertson, R., Cooke, F., 1997. Effects of parental age and environmental change on offspring sex ratio in a precocial bird. J. Anim. Ecol. 189-202. https://doi.org/10.2307/6021.

 

Čehovská, M., Musil, P., Musilová, Z., Poláková, K., Zouhar, J., 2019. Diving duck census efficiency based on monitoring of individually marked females: the influence of breeding stage and timing of census. Hous. Theor. Soc. 66, 198–206. https://doi.org/10.1080/00063657.2019.1653823.

 

Chiba, S., Iwamoto, A., Shimabukuro, S., Matsumoto, H., Inoue, K., 2023. Mechanisms that can cause population decline under heavily skewed male-biased adult sex ratios. J. Anim. Ecol. 92, 1893–1903. https://doi.org/10.1111/1365-2656.13980.

 

Donald, P.F., 2007. Adult sex ratios in wild bird populations. Ibis 149, 671–692. https://doi.org/10.1111/j.1474-919X.2007.00724.x.

 

Elmberg, J., Hessel, R., Fox, A.D., Dalby, L., 2014. Interpreting seasonal range shifts in migratory birds: a critical assessment of 'short-stopping' and a suggested terminology. J. Ornithol. 155, 571–579. https://doi.org/10.1007/s10336-014-1068-2.

 

Engen, S., Lande, R., Sæther, B.E., 2003. Demographic stochasticity and Allee effects in populations with two sexes. Ecology 84, 2378–2386. https://doi.org/10.1890/02-0123.

 

Evans, D.M., Day, K.R., 2001. Migration patterns and sex ratios of diving ducks wintering in Northern Ireland with specific reference to Lough Neagh. Ring. Migr. 20, 358–363. https://doi.org/10.1080/03078698.2001.9674263.

 

Fox, A.D., Caizergues, A., Banik, M.V., Devos, K., Dvorak, M., Ellermaa, M., et al., 2016. Recent changes in the abundance of common Pochard Aythya ferina breeding in Europe. Wildfowl 66, 22–40.

 

Frew, R.T., Brides, K., Clare, T., MacLean, L., Rigby, D., Tomlinson, C.G., et al., 2018. Temporal changes in the sex ratio of the Common Pochard Aythya ferina compared to four other duck species at Martin Mere, Lancashire, UK. Wildfowl 68, 140–154.

 

Gunnarsson, G., Waldenström, J., Fransson, T., 2012. Direct and indirect effects of winter harshness on the survival of Mallards Anas platyrhynchos in Northwest Europe. Ibis 154, 307–317. https://doi.org/10.1111/j.1474-919X.2011.01206.x.

 

Hughes, A.R., Inouye, B.D., Johnson, M.T., Underwood, N., Vellend, M., 2008. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623. https://doi.org/10.1111/j.1461-0248.2008.01179.x.

 

Hurrell, J.W., 1995. Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269, 676–679. https://doi/10.1126/science.269.5224.676.

 

Hurrell, J.W., Deser, C., 2010. North atlantic climate variability: the role of the North atlantic oscillation. J. Mar. Syst. 79, 231–244. https://doi.org/10.1016/j.jmarsys.2009.11.002.

 
Hurrell, J.W., 2016. National center for atmospheric research staff. In: The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (Station-based). https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-indexstation-based.
 

Lee, A.M., Sæther, B.E., Engen, S., 2011. Demographic stochasticity, Allee effects, and extinction: the influence of mating system and sex ratio. Am. Nat. 177, 301–313.

 

Lehikoinen, A., Christensen, T.K., Öst, M., Kilpi, M., Saurola, P., Vattulainen, A., 2008. Large-scale change in the sex ratio of a declining eider Somateria mollissima population. Wildlife Biol. 14, 288–301. https://doi.org/10.2981/0909-6396(2008)14[288:LCITSR]2.0.CO;2.

 

Lehikoinen, A., Jaatinen, K., Vähätalo, A.V., Clausen, P., Crowe, O., Deceuninck, B., et al., 2013. Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob. Change Biol. 19, 2071–2081. https://doi.org/10.1111/gcb.12200.

 

Le Galliard, J.-F., Fitze, P.S., Ferrie're, R., Clobert, J., 2005. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl. Acad. Sci. U.S.A. 102, 18231–18236. https://doi.org/10.1073/pnas.0505172102.

 
Lenth, R., 2023. Emmeans: estimated marginal means, aka least-squares means. v1.8.4–1. https://CRAN.R-project.org/package=emmeans.
 

Liker, A., Székely, T., 2005. Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59, 890–897. https://doi.org/10.1111/j.0014-3820.2005.tb01762.x.

 

López-Moreno, J.I., Vicente-Serrano, S.M., Morán-Tejeda, E., Lorenzo-Lacruz, J., Kenawy, A., Beniston, M., 2011. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Global Planet. Change 77, 62–76. https://doi.org/10.1016/j.gloplacha.2011.03.003.

 

MacKenzie, B.R., Köster, F.W., 2004. Fish production and climate: sprat in the Baltic Sea. Ecology 85, 784–794. https://doi.org/10.1890/02-0780.

 

Marra, P.P., 2000. The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behav. Ecol. 11, 299–308. https://doi.org/10.1093/beheco/11.3.299.

 

Marchesan, M., 2002. Operational sex ratio and breeding strategies in the feral pigeon Columba livia. Ardea 90, 249–257.

 
Mateo, R., 2009. Lead Poisoning in wild birds in Europe and the regulations adopted by different countries. In: Watson, R.T., Fuller, M., Pokras, M., Hunt, W.G. (Eds.), Ingestion of Lead from Spent Ammunition: Implications for Wildlife and Humans. The Peregrine Fund, Boise Idaho, pp. 71–98. https://doi.org/10.4080/ilsa.2009.0107.
 

McKinney, F., 1985. Primary and secondary male reproductive strategies of dabbling ducks. Avian Monog. 37, 68–82.

 

Morrison, C.A., Robinson, R.A., Clark, J.A., Gill, J.A., 2016. Causes and consequences of spatial variation in sex ratios in a declining bird species. J. Anim. Ecol. 85, 1298–1306. https://doi.org/10.1111/1365-2656.12556.

 

Musil, P., 2000. Monitoring of waterbird breeding populations in the Czech Republic (1988–1997). Vogellwelt 120, 253–256.

 

Musil, P., Fuchs, R., 1994. Changes in abundance of water birds species in southern Bohemia (Czech Republic) in the last 10 years. Hydrobiologia 279, 511–519.

 
Musil, P., Cepák, J., Hudec, K., Zárybnický, J., 2001. The long term trends in the breeding waterfowl population in the Czech republic. OMPO. Institute of Applied Ecology, Kostelec nad Černými lesy.
 

Musil, P., Neužilová, Š., 2009. Long-term changes in duck inter-specific nest parasitism in South Bohemia, Czech Republic. Wildfowl 2, 176–183.

 
Musil, P., Musilová, Z., Neužilová, Š., Sedláček, O., Rydval, J., Zouhar, J., et al., 2023. Metodika monitoringu hnízdních populací vodních ptáků a jejich prostředí. Fakulta Zivotního ˇ Prostředí ČZU V Praze.
 

Newton, I., 1998. Population Limitation in Birds. Academic Press, London.

 

Newton, I., 2008. The Migration Ecology of Birds. Academic Press, London.

 
Owen, M., Black, J.M., 1990. Waterfowl Ecology. Blackie Publishing, Glasgow.
 

Pavón-Jordán, D., Santangeli, A., Lehikoinen, A., 2017. Effects of flyway-wide weather conditions and breeding habitat on the breeding abundance of migratory boreal waterbirds. J. Avian Biol. 48, 988–996. https://doi.org/10.1111/jav.01125.

 

Pavón-Jordán, D., Clausen, P., Dagys, M., Devos, K., Encarnaçao, V., Fox, A.D., et al., 2019. Habitat- and species-mediated short- and long-term distributional changes in waterbird abundance linked to variation in European winter weather. Divers. Distrib. 25, 225–239. https://doi.org/10.1111/ddi.12855.

 

Pöysä, H., Linkola, P., Paasivaara, A., 2019. Breeding sex ratios in two declining diving duck species: between-year variation and changes over six decades. J. Ornithol. 160, 1015–1023.

 

Pöysä, H., Lammi, E., Pöysä, S., Väänänen, V.M., 2023. When good turns to bad and alien predators appear: the dynamics of biodiversity change in boreal waterbird communities. Glob. Ecol. Conserv. 48, e02727 https://doi.org/10.1016/j.gecco.2023.e02727.

 

Post, P., Götmark, F., 2006. Foraging behavior and predation risk in male and female Eurasian Blackbirds Turdus merula during the breeding season. Auk 123, 162–170. https://doi.org/10.1093/auk/123.1.162.

 
R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Reale, D., Bousses, P., Chapuis, J.L., 1996. Female-biased mortality induced by male sexual harassment in a feral sheep population. Can. J. Zool. 74, 1812–1818. https://doi.org/10.1139/z96-202.

 

Rendón, M.A., Green, A.J., Aguilera, E., Almaraz, P., 2008. Status, distribution and long-term changes in the waterbird community wintering in Doñana, South-west Spain. Biol. Conserv. 141, 1371–1388. https://doi.org/10.1016/j.biocon.2008.03.006.

 
Ridgill, S.C., Fox, A.D., 1990. Cold Weather Movements of Waterfowl in Western Europe, vol. 13. IWRB Special Publication, IWRB, Slimbridge. https://doi.org/10.3161/00016454AO2015.50.2.001.
 

Rodrigo, M.A., Rojo, C., Segura, M., Alonso-Guillén, J.L., Martín, M., Vera, P., 2015. The role of charophytes in a Mediterranean pond created for restoration purposes. Aquat. Bot. 120, 101–111. https://doi.org/10.1016/j.aquabot.2014.05.004.

 

Salgado, I., 2018. Is the raccoon (Procyon lotor) out of control in Europe? Biodivers. Conserv. 27, 2243–2256. https://doi.org/10.1007/s10531-018-1535-9.

 

Sargeant, A.B., Allen, S.H., Eberhardt, R.T., 1984. Red fox predation on breeding ducks in midcontinent North America. Wildl. Monogr. 89, 3–41.

 

Sheldon, B.C., 1998. Recent studies of avian sex ratios. Heredity 80, 397–402.

 

Stope, M.B., 2023. The raccoon (Procyon lotor) as a neozoon in Europe. Animals 13, 273. https://doi.org/10.3390/ani13020273.

 

Swennen, C., Duiven, P., Reyrink, L.A., 1979. Notes on the sex ratio in the common eider Somateria mollissima (L.). Ardea 67, 54–61.

 

Székely, T., Liker, A., Freckleton, R.P., Fichtel, C., Kappeler, P.M., 2014. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B 281, 20140342. https://doi.org/10.1098/rspb.2014.0342.

 
Št'astný, K., Hudec, K., 2016. Fauna ČR. Ptáci – Aves 1: 790. Academia, Praha.
 

Thomson, D.L., Monaghan, P., Furness, R.W., 1998. The demands of incubation and avian clutch size. Biol. Rev. 73, 293–304.

 
Wetlands International, 2019. Waterbird population estimates. https://wpe.wetlands.org.
 

Wood, K.A., Brides, K., Durham, M.E., Hearn, R.D., 2021. Adults have more male-biased sex ratios than first-winter juveniles in wintering duck populations. Avian Res. 12, 51.

 
Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.
Avian Research
Article number: 100187
Cite this article:
Homolková M, Musil P, Pavón-Jordán D, et al. Changes in the adult sex ratio of six duck species breeding populations over two decades. Avian Research, 2024, 15(2): 100187. https://doi.org/10.1016/j.avrs.2024.100187

167

Views

3

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 24 October 2023
Revised: 29 May 2024
Accepted: 30 May 2024
Published: 05 June 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return