AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The influence of wing morphology upon intraspecific divergence in birds: A global study of subspecies richness

Haiying Fana,1Weibin Guoa,1Buge LinbZhiqing HubChangcao Wangb( )Shaobin Lic( )
School of Life Sciences, Jinggangshan University, Ji'An, 343009, China
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
College of Life Science, Yangtze University, Jingzhou, 434023, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Since the time of Darwin, subspecies have been recognized as an initial stage in the evolution of species. However, the impact of dispersal on subspecies richness in birds globally has received little attention, despite dispersal being a key factor in determining the rate of evolution and playing a significant role in evolutionary divergence. Therefore, it is important to conduct a comprehensive study to address this issue. In this study, we aimed to assess the association between subspecies richness (measured by the number of subspecies) and dispersal ability (measured by the hand-wing index) on a global scale, using a dataset of over 7000 bird species. Our results revealed a negative correlation between dispersal ability and the number of subspecies, without any quadratic correlation. The wing is a crucial phenotypic trait for birds, and the concept of subspecies is important in speciation theory and conservation biology. Therefore, our findings not only enhance our understanding of the association between avian morphological traits and evolutionary divergence but also have implications for the conservation of avian species diversity.

References

 

Alzate, A., Onstein, R.E., 2022. Understanding the relationship between dispersal and range size. Ecol. Lett. 25, 2303-2323. https://doi.org/10.1111/ele.14089.

 

Arango, A., Pinto-Ledezma, J., Rojas-Soto, O., Lindsay, A.M., Mendenhall, C.D., Villalobos, F., 2022. Hand-Wing Index as a surrogate for dispersal ability: the case of the Emberizoidea (Aves: Passeriformes) radiation. Biol. J. Linn. Soc. 137, 137-144. https://doi.org/10.1093/biolinnean/blac071.

 

Avaria-Llautureo, J., Venditti, C., Rivadeneira, M.M., Inostroza-Michael, O., Rivera, RJ., Hernndez, C.E., et al., 2021. Historical warming consistently decreased size, dispersal and speciation rate of fish. Nat. Clim. Change 11, 787-793. https://doi.org/10.1038/s41558-021-01123-5.

 

Belliure, J., Sorci, G., Moller, A.P., Clobert, J., 2000. Dispersal distances predict subspecies richness in birds. J. Evol. Biol. 13, 480-487. https://doi.org/10.1046/j.1420-9101.2000.00178.x.

 

Botero, C.A., Dor, R., McCain, C.M., Safran, R.J., 2014. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259-268. https://doi.org/10.1111/mec.12572.

 

Braby, M.F., Eastwood, R., Murray, N., 2012. The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? Biol. J. Linn. Soc. 106, 699-716. https://doi.org/10.1111/j.1095-8312.2012.01909.x.

 

Bregman, T.P., Sekercioglu, C.H., Tobias, J.A., 2014. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biol. Conserv. 169, 372-383. https://doi.org/10.1016/j.biocon.2013.11.024.

 

Brusatte, S.L., O'Connor, J.K., Jarvis, E.D., 2015. The origin and diversification of birds. Curr. Biol. 25, R888-R898. http://dx.doi.org/10.1016/j.cub.2015.08.003.

 

Burin, G., Kissling, W., Guimarães, P.R., Şekercioğlu, Ç..H., Quental, T.B., 2016. Omnivory in birds is a macroevolutionary sink. Nat. Commun. 7, 11250 https://doi.org/10.1038/ncomms11250.

 

Chen, M., Li, G.P., Liu, J.L., Li, S.B., 2021. Large brain size is associated with low extra-pair paternity across bird species. Ecol. Evol. 11, 13601-13608. https://doi.org/10.1002/ece3.8087.

 

Claramunt, S., Derryberry, E.P., Remsen, J.V., Brumfield, R.T., 2012. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B. 279, 1567-1574. https://doi.org/10.1098/rspb.2011.1922.

 
Clements, J.F., 2000. Birds of the World: A Checklist. Ibis Publishing Co., Vista, CA.
 

Condamine, F.L., Rolland, J., Morlon, H., 2019. Assessing the causes of diversification slowdowns temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900-1912. https://doi.org/10.1111/ele.13382.

 

Crochet, P.A., 2000. Genetic structure of avian populations-allozymes revisited. Mol. Ecol. 9, 1463-1469. https://doi.org/10.1046/j.1365-294x.2000.01026.x.

 

Crouch, N.M., Tobias, J.A., 2022. The causes and ecological context of rapid morphological evolution in birds. Ecol. Lett. 25, 611-623. https://doi.org/10.1111/ele.13962.

 
Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.
 

Dawideit, B.A., Phillimore, A.B., Laube, I., Leisler, B., Böhning-Gaese, K., 2009. Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol. 78, 388-395. http://www.jstor.org/stable/27696378.

 
Dickinson, E.C., 2003. The Howard and Moore Complete Checklist of the Birds of the World. Princeton Univ. Press, Princeton.
 

Dingle, C., Halfwerk, W., Slabbekoorn, H., 2008. Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren, J. Evol. Biol. 21, 1079-1089. https://doi.org/10.1111/j.1420-9101.2008.01536.x.

 

Galiana, N., Lurgi, M., Montoya, J.M., Araújo, M.B., Galbraith, E.D., 2023. Climate or diet? The importance of biotic interactions in determining species range size. Global Ecol. Biogeogr. 32, 1178-1188. https://doi.org/10.1111/geb.13686.

 

Gavrilets, S., Vose, A., 2005. Dynamic patterns of adaptive radiation. Proc. Natl. Acad. Sci. U.S.A. 102, 18040-18045. https://doi.org/10.1073/pnas.0506330102.

 

Hadfield, J.D., 2010. MCMC methods for multi-response generalised linear mixed models: the mcmcglmm R package. J. Stat. Software 33, 1-22. https://doi.org/10.18637/jss.v033.i02.

 

Haig, S.M., Beever, E.A., Chambers, S.M., Draheim, H.M., Dugger, B.D., Dunham, S., et al., 2006. Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act. Conserv. Biol. 20, 1584-1594. https://doi.org/10.1111/j.1523-1739.2006.00530.x.

 

Hastings, A., Gavrilets, S., 1999. Global dispersal reduces local diversity. Proc. R. Soc. B. 66, 2067-2070. https://doi.org/10.1098/rspb.1999.0888.

 

Hoffmann, A.A., Sgrò, C.M., 2011. Climate change and evolutionary adaptation. Nature 470, 479-485. https://doi.org/10.1038/nature09670.

 

Hosner, P.A., Tobias, J.A., Braun, E.L., Kimball, R.T., 2017. How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal evolution in the landfowl (Aves: Galliformes). Proc. R. Soc. B. 284, 20170210 https://doi.org/10.1098/rspb.2017.0210.

 

Hunter, J.P., 1998. Key innovations and the ecology of macroevolution. Trends Ecol. Evol. 13, 31-36. https://doi.org/10.1016/S0169-5347(97)01273-1.

 

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O., 2012. The global diversity of birds in space and time. Nature 491, 444-448. https://doi.org/10.1038/nature11631.

 

Kennedy, J.D., Borregaard, M.K., Jønsson, K.A., Marki, P.Z., Fjeldsa, J., Rahbek, C., 2016. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B. 283, 20161922 https://doi.org/10.1098/rspb.2016.1922.

 

Leal, B.S.S., Graciano, V.A., Chaves, C.J.N., Huacre, L.A.P., Heuertz, M., Palma-Silva, C., 2019. Dispersal and local persistence shape the genetic structure of a widespread Neotropical plant species with a patchy distribution. Ann. Bot. 124, 499-512. https://doi.org/10.1093/aob/mcz105.

 

Leisler, B., Winkler, H., 2015. Evolution of island warblers: beyond bills and masses. J. Avian Biol. 45, 236-244. https://doi.org/10.1111/jav.00509.

 

Li, S.B., Liu, Y.X., Du, X.L., Li, G.P., Liao, W.B., 2023. Nest complexity correlates with larger brain size but smaller body mass across bird species. Integr. Zool. 19, 496-504. https://doi.org/10.1111/1749-4877.12744.

 

Liu, Y.T., Wu, Z.J., Liao, W.B., 2023. Large-brained birds display lower extra-pair paternity. Integr. Zool. 18, 278-288. https://doi.org/10.1111/1749-4877.12636.

 

Lockwood, R., Swaddle, J.P., Rayner, J.M.V., 1998. Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. J. Avian Biol. 29, 273-292. https://www.jstor.org/stable/3677110.

 

Luo, Y., Goh, S.P., Li, D., Gonzaga, M.O., Santos, A.J., Tanikawa, A., et al., 2020. Global diversification of Anelosimus spiders driven by long-distance overwater dispersal and Neogene climate oscillations. Syst. Biol. 69, 1122-1136. https://doi.org/10.1093/sysbio/syaa017.

 

Mayr, E., Diamond, J., 2001. The Birds of Northern Melanesia: Speciation, Ecology and Biogeography. Oxford Univ. Press, New York.

 

Mayr, E., 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belknap Press of Harvard University Press, Cambridge.

 

Milá, B., McCormack, J.E., Castañeda, G., Wayne, R.K., Smith, T.B., 2007. Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco. Proc. R. Soc. B. 274, 2653-2660. https://doi.org/10.1098/rspb.2007.0852.

 
Montgomery, D.C., Peck, E.A., Vining, G.G., 2012. Introduction to Linear Regression Analysis. John Wiley & Sons Press.
 

Newton, I., 2003. Speciation and Biogeography of Birds. Academic Press, London.

 

O'Brien, S.J., Mayr, E., 1991. Bureaucratic mischief: recognizing endangered species and subspecies. Science 251, 1187-1188. https://doi.org/10.1126/science.251.4998.1187.

 

Ortego, J., Gutiérrez-Rodríguez, J., Noguerales, V., 2021. Demographic consequences of dispersal-related trait shift in two recently diverged taxa of montane grasshoppers. Evolution 75, 1998-2013. https://doi.org/10.1111/evo.14205.

 

Phillimore, A.B., Orme, C.D.L., Davies, R.G., Hadfield, J.D., Reed, W.J., Gaston, K.J., et al., 2007. Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution 61, 942-957. https://doi.org/10.1111/j.1558-5646.2007.00068.x.

 

Phillimore, A.B., Owens, I.P.F., 2006. Are subspecies useful in evolutionary and conservation biology? Proc. R. Soc. B. 273, 1049-1053. https://doi.org/10.1098/rspb.2005.3425.

 

Phillimore, A.B., 2010. Subspecies origination and extinction in birds. Ornithol. Monogr. 67, 42-53. https://doi.org/10.1525/om.2010.67.1.42.

 

Pigot, A.L., Tobias, J.A., 2015. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. B. 282, 20141929 https://doi.org/10.1098/rspb.2014.1929.

 
R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Rohde, K., 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514-527. https://www.jstor.org/stable/3545569.

 

Rolland, J., Condamine, F.L., Beeravolu, C.R., Jiguet, F., Morlon, H., 2015. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Global Ecol. Biogeogr. 24, 1059-1071. https://doi.org/10.1111/geb.12354.

 

Salisbury, C.L., Seddon, N., Cooney, C.R., Tobias, J.A., 2012. The latitudinal gradient in dispersal constraints: ecological specialisation drives diversification in tropical birds. Ecol. Lett. 15, 847-855. https://doi.org/10.1111/j.1461-0248.2012.01806.x.

 

Sayol, F., Steinbauer, M.J., Blackburn, T.M., Antonelli, A., Faurby, S., 2020. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 https://doi.org/10.1126/sciadv.abb6095.

 

Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A., et al., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. https://doi.org/10.1038/s41467-020-16313-6.

 

Sheu, Y., Zurano, J.P., Ribeiro-Junior, M.A., Ávila-Pires, T.C., Rodrigues, M.T., Colli, G.R., et al., 2020. The combined role of dispersal and niche evolution in the diversification of Neotropical lizards. Ecol. Evol. 10, 2608-2625. https://doi.org/10.1002/ece3.6091.

 

Smith, B.T., McCormack, J.E., Cuervo, A.M., Hickerson, M.J., Aleixo, A., Cadena, C.D., et al., 2014. The drivers of tropical speciation. Nature 515, 406-409. https://doi.org/10.1038/nature13687.

 

Sol, D., Gray, S.D., Lefebvre, L., 2005. Behavioral drive or behavioral inhibition in evolution: subspecies diversification in Holarctic passerines. Evolution 59, 2669-2677. https://doi.org/10.1111/j.0014-3820.2005.tb00978.x.

 

Stoddard, M.C., Yong, E.H., Akkaynak, D., Sheard, C., Tobias, J.A., Manadevan, L., 2017. Avian egg shape: Form, function, and evolution. Science 356, 1249-1254. https://doi.org/10.1126/science.aaj1945.

 

Suárez, D., Arribas, P., Jiménez-García, E., Emerson, B.C., 2022. Dispersal ability and its consequences for population genetic differentiation and diversification. Proc. R. Soc. B. 289, 20220489 https://doi.org/10.1098/rspb.2022.0489.

 

Talavera, A., Tellería, J.L., 2022. Does microhabitat use affect population differentiation? A test with southwestern Palaearctic forest birds. J. Ornithol. 163, 923-929. https://doi.org/10.1007/s10336-022-01998-x.

 

Tobias, J.A., Sheard, C., Seddon, N., Meade, A., Cotton, A.J., Nakagawa, S., 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 74. https://doi.org/10.3389/fevo.2016.00074.

 

Tobias, J.A., Ottenburghs, J., Pigot, A.L., 2020. Avian diversity: speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 51, 533-560. https://doi.org/10.1146/annurev-ecolsys-110218-025023.

 

Travis, J.M.J., Delgado, M., Bocedi, G., Baguette, M., Bartoń, K., Bonte, D., et al., 2013. Dispersal and species' responses to climate change. Oikos 122, 1532-1540. https://doi.org/10.1111/j.1600-0706.2013.00399.x.

 

Uy, J.A.C., Irwin, D.E., Webster, M.S., 2018. Behavioral isolation and incipient speciation in birds. Annu. Rev. Ecol. Evol. Syst. 49, 1-24. https://doi.org/10.1146/annurev-ecolsys-110617-062646.

 

Wang, C.C., Lu, X., 2018. Hamilton's inclusive fitness maintains heritable altruism polymorphism through rb=c. Proc. Natl. Acad. Sci. U.S.A. 115, 1860-1864. https://doi.org/10.1073/pnas.1710215115.

 

Weeks, B.C., Claramunt, S., 2014. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. R. Soc. B. 281, 20141257 https://doi.org/10.1098/rspb.2014.1257.

 

Zink, R.M., 2004. The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc. R. Soc. B. 271, 561-564. https://doi.org/10.1098/rspb.2003.2617.

Avian Research
Article number: 100188
Cite this article:
Fan H, Guo W, Lin B, et al. The influence of wing morphology upon intraspecific divergence in birds: A global study of subspecies richness. Avian Research, 2024, 15(2): 100188. https://doi.org/10.1016/j.avrs.2024.100188

115

Views

2

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 01 March 2024
Revised: 30 April 2024
Accepted: 03 June 2024
Published: 04 June 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return