PDF (10.4 MB)
Collect
Submit Manuscript
Research Article | Open Access

Assessing the vulnerability of wintering habitats for the red-listed Asian Houbara (Chlamydotis macqueenii) using climate models and human impact assessments

Gulzaman Williama ()Zafeer SaqibbAbdul QadircNisha NaeemdMehrban Ali BrohieAsim KamranfAfia Rafiqueb
Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
GIS and Eco-Informatics Laboratory, Department of Environmental Science, International Islamic University, Islamabad, Pakistan
College of Earth and Environmental Science, University of the Punjab, Lahore, Pakistan
Department of Zoology, University of Sialkot, Sialkot, Pakistan
Zoological Survey of Pakistan, Islamabad, Pakistan
Punjab Wildlife and Parks Department, Lahore, Pakistan
Show Author Information

Abstract

The Asian Houbara (Chlamydotis macqueenii), a vulnerable species, is under significant threat from habitat degradation and anthropogenic pressures in Pakistan’s arid landscapes. This study addresses the urgent need for conservation by identifying critical habitats, analyzing the influence of environmental and human factors on species distribution, and projecting future habitat shifts under climate change scenarios. Using the MaxEnt model, which achieves a robust predictive accuracy (AUC = 0.854), we mapped current and future habitat suitability under Shared Socioeconomic Pathways (SSP126, SSP370, SSP585) for the years 2040 and 2070. Presently, the suitable habitat extends over 217,082 km2, with 52,751 km2 classified as highly suitable. Key environmental drivers, identified via the Jackknife test, revealed that annual mean temperature (Bio1) and slope play a dominant role in determining habitat suitability. Projections show significant habitat degradation; however, under SSP585, highly suitable areas are expected to expand by up to 24.92% by 2070. Despite this increase, vast areas remain unsuitable, posing serious risks to population sustainability. Moreover, only 2115 km2 of highly suitable habitat currently falls within protected zones, highlighting a critical conservation shortfall. These findings highlight the imperative for immediate, targeted conservation efforts to secure the species' future in Pakistan’s desert ecosystems.

References

 

Abedin, I., Mukherjee, T., Abedin, J., Kim, H.W., Kundu, S., 2024. Habitat loss in the IUCN extent: climate change-induced threat on the red goral (Naemorhedus baileyi) in the temperate mountains of south Asia. Biology 13, 667. https://doi.org/10.3390/biology13090667.

 

Aghanajafizadeh, S., Hemami, M.R., Heydari, F., 2012. Nest-site selection by the asian houbara bustard, Chlamydotis macqueenii, in the steppe of Harat, Iran: (Aves: Otidae). Zool. Middle East 57, 11–18. https://doi.org/10.1080/09397140.2012.10648958.

 

Ahmadi, M., Farhadinia, M.S., Cushman, S.A., Hemami, M.R., Nezami Balouchi, B., Jowkar, H., et al., 2020. Species and space: a combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5.

 

Ashrafzadeh, M.R., Khosravi, R., Adibi, M.A., Taktehrani, A., Wan, H.Y., Cushman, S.A., 2020. A multi-scale, multi-species approach for assessing effectiveness of habitat and connectivity conservation for endangered felids. Biol. Conserv. 245, 108523. https://doi.org/10.1016/j.biocon.2020.108523.

 

Ata, S., Shahbaz, B., Watto, M.A., Siddiqui, M.T., 2019. Short-term land acquisition, long-term impacts: the case of Houbara Bustard hunting in South Punjab, Pakistan. J. Asian Afr. Stud. 54, 390–408. https://doi.org/10.1177/0021909618822.

 

Azar, J.F., Ferlat, C., Landsmann, C., Hingrat, Y., 2022. Timing of release influence breeding success of translocated captive-bred migrant Asian houbara bustard. Front. Conserv. Sci. 3, 815506. https://doi.org/10.3389/fcosc.2022.815506.

 
BirdLife International, 2021. Chlamydotis macqueenii. The IUCN Red List of Threatened Species 2021: e.T22733562A205364424. https://doi.org/10.2305/IUCN.UK.20213.RLTS.T22733562A205364424.en. (Accessed 27 August 2024).
 

Bosso, L., Smeraldo, S., Rapuzzi, P., Sama, G., Garonna, A.P., Russo, D., 2018. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203. https://doi.org/10.1111/een.12485.

 

Bradie, J., Leung, B., 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 44, 1344–1361. https://doi.org/10.1111/jbi.12894.

 

Bhatti, N.B., Siyal, A.A., Qureshi, A.L., Solangi, G.S., Memon, N.A., Bhatti, I.A., 2020. Impact of small dam’s construction on groundwater quality and level using water quality index (WQI) and GIS: nagarparkar area of Sindh, Pakistan. Hum. Ecol. Risk Assess. 26, 2586–2607.

 

Chen, H., Costanza, R., 2024. Valuation and management of desert ecosystems and their services. Ecosyst. Serv. 66, 101607. https://doi.org/10.1016/j.ecoser.2024.101607.

 

Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432.

 

Cheng, L.L., Que, X.E., Yang, L., Yao, X.L., Lu, Q., 2020. China’s desert ecosystem: functions rising and services enhancing. Bull. Chin. Acad. Sci. 35, 690–698. https://doi.org/10.16418/j.issn.1000-3045.20200430001.

 

Cooper, D.M., Dugmore, A.J., Gittings, B.M., Scharf, A.K., Wilting, A., Kitchener, A.C., 2016. Predicted Pleistocene-Holocene range shifts of the tiger (Panthera tigris). Divers. Distrib. 22, 1199–1211. https://doi.org/10.1111/ddi.12484.

 

Dolman, P.M., Scotland, K.M., Burnside, R.J., Collar, N.J., 2021. Sustainable hunting and the conservation of the threatened houbara bustards. J. Nat. Conserv. 61, 126000. https://doi.org/10.1016/j.jnc.2021.126000.

 

Dunne, J.P., Horowitz, L.W., Adcroft, A.J., Ginoux, P., Held, I.M., John, J.G., et al., 2020. The GFDL Earth System Model version 4.1 (GFDL‐ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015. https://doi.org/10.1029/2019MS002015.

 

Elsen, P.R., Saxon, E.C., Simmons, B.A., Ward, M., Williams, B.A., Grantham, H.S., et al., 2022. Accelerated shifts in terrestrial life zones under rapid climate change. Global Change Biol. 28, 918–935. https://doi.org/10.1111/gcb.15962.

 

Elvidge, C.D., Baugh, K.E., Zhizhin, M., Hsu, F.C., 2017. VIIRS night-time lights. Int. J. Rem. Sens. 38, 5860–5879. https://doi.org/10.1080/01431161.2017.1342050.

 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086.

 

Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49. https://doi.org/10.1017/S0376892997000088.

 

Fordham, D.A., Jackson, S.T., Brown, S.C., Huntley, B., Brook, B.W., Dahl-Jensen, D., et al., 2020. Using paleo-archives to safeguard biodiversity under climate change. Science 369, eabc5654. https://doi.org/10.1126/science.abc5654.

 

Gallagher, R.V., Hughes, L., Leishman, M.R., 2013. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540. https://doi.org/10.1111/j.1600-0587.2012.07514.x.

 

Gardner, J.L., Clayton, M., Allen, R., Stein, J., Bonnet, T., 2022. The effects of temperature extremes on survival in two semi‐arid Australian bird communities over three decades, with predictions to 2104. Global Ecol. Biogeogr. 31, 2498–2509. https://doi.org/10.1111/geb.13591.

 

Gregory, A., Spence, E., Beier, P., Garding, E., 2021. Toward best management practices for ecological corridors. Land 10, 140. https://doi.org/10.3390/land10020140.

 

Guisan, A., Mod, H.K., Scherrer, D., Münkemüller, T., Pottier, J., Alexander, J.M., et al., 2019. Scaling the linkage between environmental niches and functional traits for improved spatial predictions of biological communities. Global Ecol. Biogeogr. 28, 1384–1392. https://doi.org/10.1111/geb.12967.

 

Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., et al., 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.1500052.

 

Haghani, A., Aliabadian, M., Sarhangzadeh, J., Setoodeh, A., 2018. Seasonal evaluation habitat of asian houbara in the central and east Iran. Int. J. Environ. Sci. Technol. 15, 1223–1232. https://doi.org/10.1007/s13762-017-1464.

 

Hardouin, L.A., Hingrat, Y., Nevoux, M., Lacroix, F., Robert, A., 2015. Survival and movement of translocated houbara bustards in a mixed conservation area. Anim. Conserv. 18, 461–470. https://doi.org/10.1111/acv.12196.

 

Hasui, É., Martensen, A.C., Uezu, A., Pimentel, R.G., Ramos, F.N., Ribeiro, M.C., et al., 2024. Populations across bird species distribution ranges respond differently to habitat loss and fragmentation: implications for conservation strategies. Perspect. Ecol. Conserv. 22, 43–54. https://doi.org/10.1016/j.pecon.2023.11.003.

 

Karanth, K.K., Gupta, S., Vanamamalai, A., 2018. Compensation payments, procedures and policies towards human-wildlife conflict management: insights from India. Biol. Conserv. 227, 383–389. https://doi.org/10.1016/j.biocon.2018.07.006.

 

Keeley, A.T., Ackerly, D.D., Cameron, D.R., Heller, N.E., Huber, P.R., Schloss, C.A., et al., 2018. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett. 13, 073002. https://doi.org/10.1088/1748-9326/aacb85.

 

Khanum, R., Mumtaz, A.S., Kumar, S., 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol. 49, 23–31. https://doi.org/10.1016/j.actao.2013.02.007.

 

Koshkin, M.A., Burnside, R.J., Collar, N.J., Guilherme, J.L., Showler, D.A., Dolman, P.M., 2016. Effects of habitat and land use on breeding season density of male Asian Houbara Chlamydotis macqueenii. J. Ornithol. 157, 811–823. https://doi.org/10.1007/s10336-015-1320-4.

 

Koutchoro, A.M., Amahowe, O.I., Houessou, L.G., Lougbegnon, T.O., 2024. Role of local markets in illegal wildlife trade and conservation efforts for trafficked species. Global Ecol. Conserv. 54, e03110. https://doi.org/10.1016/j.gecco.2024.e03110.

 

Larson, L.R., Conway, A.L., Hernandez, S.M., Carroll, J.P., 2016. Human-wildlife conflict, conservation attitudes, and a potential role for citizen science in Sierra Leone, Africa. Conserv. Soc. 14, 205–217. https://doi.org/10.4103/0972-4923.191159.

 

Lautenbach, J.D., Haukos, D.A., Lautenbach, J.M., Hagen, C.A., 2021. Ecological disturbance through patch‐burn grazing influences lesser prairie‐chicken space use. J. Wildl. Manag. 85, 1699–1710. https://doi.org/10.1002/jwmg.22118.

 

Ma, L., Conradie, S.R., Crawford, C.L., Gardner, A.S., Kearney, M.R., Maclean, I.M., et al., 2023. Global patterns of climate change impacts on desert bird communities. Nat. Commun. 14, 211. https://doi.org/10.1038/s41467-023-35814-8.

 

Marshall, K., White, R., Fischer, A., 2007. Conflicts between humans over wildlife management: on the diversity of stakeholder attitudes and implications for conflict management. Biodivers. Conserv. 16, 3129–3146. https://doi.org/10.1007/s10531-007-9167-5.

 

McGuire, J.L., Lawler, J.J., McRae, B.H., Nuñez, T.A., Theobald, D.M., 2016. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. USA 113, 7195–7200. https://doi.org/10.1073/pnas.1602817113.

 

Monnier‐Corbel, A., Monnet, A.C., Hingrat, Y., Robert, A., 2022. Patterns of abundance reveal evidence of translocation and climate effects on Houbara bustard population recovery. Anim. Conserv. 25, 297–310. https://doi.org/10.1111/acv.12738.

 

Nabi, G., Ullah, R., Khan, S., Nawsherwan, Amin, M., Rauf, N., 2019. The Asian Houbara Bustard (Chlamydotis macqueenii): on an accelerating path to extinction? Biodivers. Conserv. 28, 1301–1302. https://doi.org/10.1007/s10531-019-01727-6.

 

Pakniat, D., Hemami, M.R., Shahnaseri, G., Maleki, S., Adibi, M.A., Besmeli, M.R., et al., 2021. The potential distribution of wintering and breeding populations of Asian Houbara Chlamydotis macqueenii in Iran. Bird. Conserv. Int. 31, 151–165. https://doi.org/10.1017/S0959270920000167.

 

Penteriani, V., Zarzo‐Arias, A., Novo‐Fernández, A., Bombieri, G., López‐Sánchez, C.A., 2019. Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Global Change Biol. 25, 1133–1151. https://doi.org/10.1111/gcb.14564.

 

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

 

Qin, A., Jin, K., Batsaikhan, M.E., Nyamjav, J., Li, G., Li, J., et al., 2020. Predicting the current and future suitable habitats of the main dietary plants of the Gobi Bear using MaxEnt modeling. Global Ecol. Conserv. 22, e01032. https://doi.org/10.1016/j.gecco.2020.e01032.

 

Rather, Z.A., Ahmad, R., Dar, A.R., Dar, T.U.H., Khuroo, A.A., 2021. Predicting shifts in distribution range and niche breadth of plant species in contrasting arid environments under climate change. Environ. Monit. Assess. 193, 427. https://doi.org/10.1007/s10661-021-09160-5.

 

Riddell, E.A., Iknayan, K.J., Hargrove, L., Tremor, S., Patton, J.L., Ramirez, R., et al., 2021. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636. https://doi.org/10.1126/science.abd4605.

 

Shadloo, S., Mahmoodi, S., Hosseinzadeh, M.S., Kazemi, S.M., 2021. Prediction of habitat suitability for the desert monitor (Varanus griseus caspius) under the influence of future climate change. J. Arid Environ. 186, 104416.

 

Shao, M., Wang, L., Li, B., Li, S., Fan, J., Li, C., 2022. Maxent modeling for identifying the nature reserve of cistanche deserticola ma under effects of the host (Haloxylon Bunge) forest and climate changes in Xinjiang, China. Forests 13, 189. https://doi.org/10.3390/f13020189.

 

Songer, M., Delion, M., Biggs, A., Huang, Q., 2012. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012(1), 108752. https://doi.org/10.1155/2012/108752.

 

Sumasgutner, P., Cunningham, S.J., Hegemann, A., Amar, A., Watson, H., Nilsson, J.F., et al., 2023. Interactive effects of rising temperatures and urbanisation on birds across different climate zones: a mechanistic perspective. Global Change Biol. 29, 2399–2420. https://doi.org/10.1111/gcb.16645.

 

Usman, F., Hussain, F., Leghari, S.K., Gulshan, A.B., Khan, M.A., Nijabat, A., et al., 2022. Possible threats to agrobiodiversity of Thar Desert in Pakistan. GU J. Phytosci. 2, 60–67.

 

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., et al., 2002. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1038/416389a.

 

Wang, Y., Wu, K., Zhao, R., Xie, L., Li, Y., Zhao, G., et al., 2024. Prediction of potential suitable habitats in the 21st century and GAP analysis of priority conservation areas of Chionanthus retusus based on the MaxEnt and Marxan models. Front. Plant Sci. 15, 1304121.

 

Wilkening, J., Pearson‐Prestera, W., Mungi, N.A., Bhattacharyya, S., 2019. Endangered species management and climate change: when habitat conservation becomes a moving target. Wildl. Soc. Bull. 43, 11–20. https://doi.org/10.1002/wsb.944.

 

William, G., Saqib, Z., Qadir, A., Iqbal, M.J., Rafique, A., 2024a. Modelling of Aythya nyroca habitat under climate change scenarios in Pakistan using MaxEnt approach. Int. J. Environ. Stud. 81, 2419–2434. https://doi.org/10.1080/00207233.2024.2389693.

 

William, G., Saqib, Z., Naeem, N., Kamran, A., Masih, A., Rafique, A., 2024b. Predicting climate driven habitat shifts for the Egyptian vulture in Punjab, Pakistan. J. Nat. Conserv., 126774 https://doi.org/10.1016/j.jnc.2024.126774.

 

Yang, B., Qin, S., Xu, W., Busch, J., Yang, X., Gu, X., et al., 2020. Gap analysis of giant panda conservation as an example for planning China’s national park system. Curr. Biol. 30, 1287–1291. https://doi.org/10.1016/j.cub.2020.01.069.

 

Yang, X.S., He, X., 2013. Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5, 141–149. https://doi.org/10.1504/IJBIC.2013.055093.

 

Yousefi, M., Ahmadi, M., Nourani, E., Rezaei, A.L.I., Kafash, A., Khani, A.L.I., et al., 2017. Habitat suitability and impacts of climate change on the distribution of wintering population of Asian Houbara Bustard Chlamydotis macqueenii in Iran. Bird. Conserv. Int. 27, 294–304. https://doi.org/10.1017/S0959270916000381.

 

Yuan, R., Zhang, N., Zhang, Q., 2024. The impact of habitat loss and fragmentation on biodiversity in global protected areas. Sci. Total Environ. 931, 173004. https://doi.org/10.1016/j.scitotenv.2024.173004.

 

Zhang, Y., Tariq, A., Hughes, A.C., Hong, D., Wei, F., Sun, H., et al., 2023. Challenges and solutions to biodiversity conservation in arid lands. Sci. Total Environ. 857, 159695. https://doi.org/10.1016/j.scitotenv.2022.159695.

 

Zhu, G.P., Ye, Z., Du, J., Zhang, D.L., Zhen, Y.H., Zheng, C.G., et al., 2016. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys). Sci. Rep. 6, 23192. https://doi.org/10.1038/srep23192.

Avian Research
Cite this article:
William G, Saqib Z, Qadir A, et al. Assessing the vulnerability of wintering habitats for the red-listed Asian Houbara (Chlamydotis macqueenii) using climate models and human impact assessments. Avian Research, 2025, 16(1). https://doi.org/10.1016/j.avrs.2024.100221
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return