The transformation of natural habitats into human-modified landscapes has far-reaching consequences for species distribution and abundance. As species adapt to these changing environments, shifts in distribution patterns, niche dynamics, and interspecies interactions may occur, impacting biodiversity at multiple levels and potentially leading to ecosystem imbalances. This study aims to assess the impact of variations in vegetation composition and human disturbance on the distribution of sympatric breeding birds and to determine the extent of niche overlap or differentiation among these species. We conducted field surveys and collected data on bird distribution, vegetation composition, and level of human disturbance in eastern Inner Mongolian grasslands. We focused on the six most frequently co-occurring breeding birds, representing a mix of sparrows, larks, and corvids. Generalized Additive Models revealed varying responses of species occurrence along habitat gradients. Species like the Eurasian Skylark (Alauda arvensis), Mongolian Lark (Melanocorypha mongolica), and Asian Short-toed Lark (Calandrella cheleensis), increased in larger and more connected habitats, while others, like the Tree Sparrow (Passer montanus), Eurasian Magpie (Pica pica), and Barn Swallow (Hirundo rustica), adapted to more fragmented habitats. Niche analysis indicated habitat generalists tended to occupy larger niches than grassland specialists. Substantial niche overlap was also found among the six co-occurring bird species. Conservation efforts should consider the specific needs of specialist species and strive to maintain or restore critical grassland habitats. Additionally, promoting sustainable agricultural practices that balance the needs of birds and human activities can contribute to the coexistence of generalist and specialist bird species in modified landscapes.
Abou Zeid, F., Morelli, F., Ibáñez-Álamo, J.D., Díaz, M., Reif, J., Jokimäki, J., et al., 2023. Spatial overlap and habitat selection of corvid species in European cities. Animals 13, 1192. https://doi.org/10.3390/ani13071192.
Anderson, R.P., 2017. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 44, 8–17. https://doi.org/10.1111/jbi.12825.
Anjos, L., Bochio, G.M., Medeiros, H.R., Almeida, B.d.A., Lindsey, B.R.A., Calsavara, L.C., et al., 2019. Insights on the functional composition of specialist and generalist birds throughout continuous and fragmented forests. Ecol. Evol. 9, 6318–6328. https://doi.org/10.1002/ece3.5204.
Barrero, A., Ovaskainen, O., Traba, J., Gómez-Catasús, J., 2023. Co-occurrence patterns in a steppe bird community: insights into the role of dominance and competition. Oikos 2023, e09780. https://doi.org/10.1111/oik.09780.
Blonder, B., Lamanna, C., Violle, C., Enquist, B.J., 2014. The n-dimensional hypervolume. Global Ecol. Biogeogr. 23, 595–609. https://doi.org/10.1111/geb.12146.
Boscolo, D., Metzger, J.P., 2009. Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc. Ecol. 24, 907–918. https://doi.org/10.1007/s10980-009-9370-8.
Breheny, P., Burchett, W., Breheny, M.P., 2020. Package ‘visreg’. R Package Version 2.
Brüggeshemke, J., Drung, M., Löffler, F., Fartmann, T., 2022. Effects of local climate and habitat heterogeneity on breeding-bird assemblages of semi-natural grasslands. J. Ornithol. 163, 695–707. https://doi.org/10.1007/s10336-022-01972-7.
Büchi, L., Vuilleumier, S., 2014. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am. Nat. 183, 612–624.
Carscadden, K.A., Emery, N.C., Arnillas, C.A., Cadotte, M.W., Afkhami, M.E., Gravel, D., et al., 2020. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 95, 179–214. https://doi.org/10.1086/710388.
Clavel, J., Julliard, R., Devictor, V., 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228. https://doi.org/10.1890/080216.
Colwell, R.K., Futuyma, D.J., 1971. On the measurement of niche breadth and overlap. Ecology 52, 567–576. https://doi.org/10.2307/1934144.
Coppedge, B.R., Fuhlendorf, S.D., Harrell, W.C., Engle, D.M., 2008. Avian community response to vegetation and structural features in grasslands managed with fire and grazing. Biol. Conserv. 141, 1196–1203. https://doi.org/10.1016/j.biocon.2008.02.015.
Correll, M.D., Strasser, E.H., Green, A.W., Panjabi, A.O., 2019. Quantifying specialist avifaunal decline in grassland birds of the Northern Great Plains. Ecosphere 10, e02523. https://doi.org/10.1002/ecs2.2523.
Cui, W., Marsland, R., Mehta, P., 2020. Effect of resource dynamics on species packing in diverse ecosystems. Phys. Rev. Lett. 125, 048101. https://doi.org/10.1103/PhysRevLett.125.048101.
Darlington, P.J., 1972. Competition, competitive repulsion, and coexistence. P. Natl. Acad Sci. 69, 3151–3155. https://doi.org/10.1073/pnas.69.11.3151.
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., et al., 2010. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25. https://doi.org/10.1111/j.1365-2664.2009.01744.x.
Dormann, C., McPherson, J., Araújo, M., Bivand, R., Bolliger, J., Carl, G., et al., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.xdos.
Fahrig, L., 2017. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23. https://doi.org/10.1146/annurev-ecolsys-110316-022612.
Finke, D.L., Snyder, W.E., 2008. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490. https://doi.org/10.1126/science.1160854.
Fraixedas, S., Lindén, A., Piha, M., Cabeza, M., Gregory, R., Lehikoinen, A., 2020. A state-of-the-art review on birds as indicators of biodiversity: Advances, challenges, and future directions. Ecol. Indicat. 118, 106728
Fridley, J.D., Vandermast, D.B., Kuppinger, D.M., Manthey, M., Peet, R.K., 2007. Co-occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width. J. Ecol. 95, 707–722. https://doi.org/10.1111/j.1365-2745.2007.01236.x.
Gabaldón, C., Montero-Pau, J., Carmona, M.J., Serra, M., 2015. Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. J. Plankton Res. 37, 953–965. https://doi.org/10.1093/plankt/fbv072.
Gaston, K.J., Blackburn, T.M., Goldewijk, K.K., 2003. Habitat conversion and global avian biodiversity loss. Proc. R. Soc. Lond. B 270, 1293–1300.
Graham, M.H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815.
Greer, M.J., Bakker, K.K., Dieter, C.D., 2016. Grassland bird response to recent loss and degradation of native prairie in central and western South Dakota. Wilson J. Ornithol. 128, 278–289. https://doi.org/10.1676/wils-128-02-278-289.1.
Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., et al., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052. https://doi.org/10.1126/sciadv.1500052.
Han, Z., Zhang, L., Jiang, Y., Wang, H., Jiguet, F., 2020. Unravelling species co-occurrence in a steppe bird community of Inner Mongolia: insights for the conservation of the endangered Jankowski's Bunting. Divers. Distrib. 26, 843–852. https://doi.org/10.1111/ddi.13061.
Han, Z., Zhang, L., Jiang, Y., Wang, H., Jiguet, F., 2021. Local habitat and landscape attributes shape the diversity facets of bird communities in Inner Mongolian grasslands. Avian Conserv. Ecol. 16, 3. https://doi.org/10.5751/ACE-01745-160103.
Han, Z., Yang, X., Zhao, X., Jiguet, F., Tryjanowski, P., Wang, H., 2023. Mongolian Lark as an indicator of taxonomic, functional and phylogenetic diversity of steppe birds. Avian Res. 14, 100124. https://doi.org/10.1016/j.avrs.2023.100124.
Hart, K.M., Iverson, A.R., Fujisaki, I., Lamont, M.M., Bucklin, D., Shaver, D.J., 2018. Sympatry or syntopy? Investigating drivers of distribution and co-occurrence for two imperiled sea turtle species in Gulf of Mexico neritic waters. Ecol. Evol. 8, 12656–12669. https://doi.org/10.1002/ece3.4691.
Herkert, J.R., 1994. The effects of habitat fragmentation on midwestern grassland bird communities. Ecol. Appl. 4, 461–471. https://doi.org/10.2307/1941950.
Hesselbarth, M.H., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J., 2019. landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography 42, 1648–1657.
Hutchinson, G.E., 1957. Concluding remarks. Population studies: animal ecology and demography. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427.
Hutchinson, G.E., 1959. Homage to Santa rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159.
Kassambara, A., 2016. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.
Kent, C.M., Sherry, T.W., 2020. Behavioral niche partitioning reexamined: do behavioral differences predict dietary differences in warblers? Ecology 101, e03077. https://doi.org/10.1002/ecy.3077.
Kim, M., Chung, O.-S., Lee, J.K., 2023. The relationship between nest location selection of Barn swallows (Hirundo rustica) and human activity and residence. Sci. Rep. 13, 23008. https://doi.org/10.1038/s41598-023-50149-6.
Lee, J.-H., Kim, S.-Y., Sung, H.-C., 2024. Nest site selection, nest characteristics, and breeding ecology of the Eurasian tree sparrow, Passer montanus, living in an urban area. Anim. Taxon. Ecol. 70, 46–60. https://doi.org/10.1556/1777.2024.12046.
Leibold, M.A., 1991. Trophic interactions and habitat segregation between competing Daphnia species. Oecologia 86, 510–520. https://doi.org/10.1007/BF00318317.
Londe, D.W., Fuhlendorf, S.D., Elmore, R.D., Davis, C.A., 2019. Landscape heterogeneity influences the response of grassland birds to energy development. Wildl. Biol. 2019, 00523. https://doi.org/10.2981/wlb.00523.
McDonald, L., Koper, N., 2022. Landscape openness, not patch size or grassland amount, drives area sensitivity of songbirds in northern tall-grass prairies. Landsc. Ecol. 37, 951–967. https://doi.org/10.1007/s10980-022-01408-w.
Morelli, T.L., Smith, A.B., Mancini, A.N., Balko, E.A., Borgerson, C., Dolch, R., et al., 2020. The fate of Madagascar's rainforest habitat. Nat. Clim. Change 10, 89–96. https://doi.org/10.1038/s41558-019-0647-x.
Nathan, R., Muller-Landau, H.C., 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285. https://doi.org/10.1016/S0169-5347(00)01874-7.
Newbold, T., Hudson, L.N., Phillips, H.R.P., Hill, S.L.L., Contu, S., Lysenko, I., et al., 2014. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B: Biol. Sci. 281, 20141371. https://doi.org/10.1098/rspb.2014.1371.
Pastore, A.I., Barabás, G., Bimler, M.D., Mayfield, M.M., Miller, T.E., 2021. The evolution of niche overlap and competitive differences. Nat. Ecol. Evol. 5, 330–337. https://doi.org/10.1038/s41559-020-01383-y.
Pedersen, E.J., Miller, D.L., Simpson, G.L., Ross, N., 2019. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ 7, e6876
Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P., Fernandez-Manjarrés, J.F., et al., 2010. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501.
Reino, L., Beja, P., Araújo, M.B., Dray, S., Segurado, P., 2013. Does local habitat fragmentation affect large-scale distributions? The case of a specialist grassland bird. Divers. Distrib. 19, 423–432. https://doi.org/10.1111/ddi.12019.
Rodríguez, R.A., Herrera, A.M., Santander, J., Miranda, J.V., Fernández-Rodríguez, M.J., Quirós, Á., et al., 2015. Uncertainty principle in niche assessment: a solution to the dilemma redundancy vs. competitive exclusion, and some analytical consequences. Ecol. Model. 316, 87–110. https://doi.org/10.1016/j.ecolmodel.2015.07.032.
Rolland, J., Salamin, N., 2016. Niche width impacts vertebrate diversification. Global Ecol. Biogeogr. 25, 1252–1263. https://doi.org/10.1111/geb.12482.
Rosenberg, K.V., Dokter, A.M., Blancher, P.J., Sauer, J.R., Smith, A.C., Smith, P.A., et al., 2019. Decline of the North American avifauna. Science 366, 120–124. https://doi.org/10.1126/science.aaw1313.
Sales, L.P., Hayward, M.W., Loyola, R., 2021. What do you mean by “niche”? Modern ecological theories are not coherent on rhetoric about the niche concept. Acta Oecol. 110, 103701
Schoener, T.W., 1974. Competition and the form of habitat shift. Theor. Popul. Biol. 6, 265–307. https://doi.org/10.1016/0040-5809(74)90013-6.
Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27–39. https://doi.org/10.1126/science.185.4145.27.
Sexton, J.P., Montiel, J., Shay, J.E., Stephens, M.R., Slatyer, R.A., 2017. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206. https://doi.org/10.1146/annurev-ecolsys-110316-023003.
Seyer, Y., Gauthier, G., Fauteux, D., Therrien, J.-F., 2020. Resource partitioning among avian predators of the Arctic tundra. J. Anim. Ecol. 89, 2934–2945. https://doi.org/10.1111/1365-2656.13346.
Shahan, J.L., Goodwin, B.J., Rundquist, B.C., 2017. Grassland songbird occurrence on remnant prairie patches is primarily determined by landscape characteristics. Landsc. Ecol. 32, 971–988. https://doi.org/10.1007/s10980-017-0500-4.
Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A., et al., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463. https://doi.org/10.1038/s41467-020-16313-6.
Smith, A.B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H., Warren, D., 2019. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273. https://doi.org/10.1016/j.tree.2018.10.012.
Stanton, R.L., Morrissey, C.A., Clark, R.G., 2018. Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric. Ecosyst. Environ. 254, 244–254. https://doi.org/10.1016/j.agee.2017.11.028.
Staude, I.R., Overbeck, G.E., Fontana, C.S., Bencke, G.A., da Silva, T.W., Mimet, A., et al., 2021. Specialist birds replace generalists in grassland remnants as land use change intensifies. Front. Ecol. Evol. 8, 597542. https://doi.org/10.3389/fevo.2020.597542.
Swanson, H.K., Lysy, M., Power, M., Stasko, A.D., Johnson, J.D., Reist, J.D., 2015. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324. https://doi.org/10.1890/14-0235.1.
Vaughan, I.P., Ormerod, S.J., 2005. Methodological insights: increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. J. Appl. Ecol. 42, 487-497. https://doi.org/10.1111/j.1365-2664.2005.01038.x.
van Vliet, H.E.J., Stutchbury, B.J.M., Newman, A.E.M., Norris, D.R., 2020. The impacts of agriculture on an obligate grassland bird of North America. Agric. Ecosyst. Environ. 287, 106696. https://doi.org/10.1016/j.agee.2019.106696.
Wu, J., Zhang, Q., Li, A., Liang, C., 2015. Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landsc. Ecol. 30, 1579-1598
Xu, Y., Cao, Z., Wang, B., 2020. Effect of urbanization intensity on nest-site selection by Eurasian Magpies (Pica pica). Urban Ecosyst. 23, 1099–1105. https://doi.org/10.1007/s11252-020-00996-2.
Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 13, 3907–3925. https://doi.org/10.5194/essd-13-3907-2021.
Yang, E.H., Ravikumar, P., Allen, G.I., Liu, Z.D., 2015. Graphical models via univariate exponential family distributions. J. Machine Learn. Res. 16, 3813–3847.
Zhang, S., Zheng, G., Xu, J., 2008. Habitat use of urban Tree Sparrows in the process of urbanization: Beijing as a case study. Front. Biol. China 3, 308–314. https://doi.org/10.1007/s11515-008-0042-x.