The imbalanced allocation of maternal resources to eggs and nestlings may significantly impact the phenotype and fitness of offspring. Moreover, anthropogenic metal pollution has been reported to exert adverse effects on avian offspring. Therefore, we herein evaluated the relationships among offspring characteristics, asymmetric sibling rivalry, and the resulting offspring phenotype in a small passerine bird, Tree Sparrow (Passer montanus), at a polluted site (Baiyin, BY) and a relatively unpolluted site (Liujiaxia, LJX). By initiating incubation before the completion of clutch, asymmetric sibling rivalry might create a core and marginal offspring within the brood. In this study, lower egg mass, fewer core offspring, and more marginal offspring were found at the polluted site. Although eggshell speckling and coloration were relatively similar between the two sites, higher eggshell spotting coverage ratio and lower eggshell lightness (L*) and hue (h°) were observed in core eggs than in marginal eggs at the unpolluted site. The clutch size had a positive relationship with egg mass at the polluted site and with brood size at hatching at the unpolluted site. The differences in egg measurements across the laying orders in the samples were relatively large for larger clutch sizes. The core and marginal egg masses had a significant positive effect on the size of early core nestlings and late marginal nestlings at the unpolluted site. Fledgling rate was significantly positively related to the incubation period and nestling period, while negative relationship with mean spotting coverage ratio was found at the polluted site. Marginal nestlings at the polluted site showed a higher mortality rate. Overall, although asymmetric sibling competition strongly determines the variation of marginal offspring size, the effect is less dramatic in metal-polluted environments, providing some respite to wild birds that survive pollution-induced stress.
Ali, H., Khan, E., 2018. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—concepts and implications for wildlife and human health. Hum. Ecol. Risk Assess. 25, 1353–1376. https://doi.org/10.1080/10807039.2018.1469398.
Alleva, E., Francia, N., Pandolfi, M., De Marinis, A., Chiarotti, F., Santucci, D., 2006. Organochlorine and heavy-metal contaminants in wild mammals and birds of Urbino-Pesaro province, Italy: an analytic overview for potential bioindicators. Arch. Environ. Con. Tox. 51, 123–134. https://doi.org/10.1007/s00244-005-0218-1.
Amundsen, T., Slagsvold, T., 1996. Lack’s brood reduction hypothesis and avian hatching asynchrony: what’s next? Oikos 76, 613–620. https://doi.org/10.2307/3546359.
Baird, T., Solomon, S.E., Tedstone, D.R., 1975. Localisation and characterisation of egg shell porphyrins in several avian species. Brit. Poultry Sci. 16, 201–208. https://doi.org/10.1080/00071667508416177.
Benton, T.G., Plaistow, S.J., Beckerman, A.P., Lapsley, C.T., Littlejohns, S., 2005. Changes in maternal investment in eggs can affect population dynamics. Proc. R. Soc. B-Biol. Sci. 272, 1351–1356. https://doi.org/10.1098/rspb.2005.3081.
Bernardo, J., 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am. Zool. 36, 216–236. https://doi.org/10.1093/icb/36.2.216.
Chevin, L.M., Lande, R., Mace, G.M., 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357.
Christians, J.K., 2002. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. 77, 1–26. https://doi.org/10.1017/S1464793101005784.
Chu, G.Z., Zheng, G.M., 1982. Feeding ecology of the tree sparrow (Passer montanus) during breeding period in the agriculture region of Beijing. Zool. Res. 3, 371–383.
Crean, A.J., Marshall, D.J., 2009. Coping with environmental uncertainty: dynamic bet hedging as a maternal effect. Philos. T. R. Soc. B. 364, 1087–1096. https://doi.org/10.1098/rstb.2008.0237.
Dickens, M., Hartley, I.R., 2007. Differences in parental food allocation rules: evidence for sexual conflict in the blue tit? Behav. Ecol. 18, 674–679. https://doi.org/10.1093/beheco/arm029.
Ding, J., Wang, S.N., Yang, W.Z., Zhang, H.J., Yu, F., Zhang, Y.M., 2023. Tissue distribution and association of heavy metal accumulation in a free-living resident passerine bird tree sparrow Passer montanus. Environ. Pollut. 316, 120547. https://doi.org/10.1016/j.envpol.2022.120547.
Ding, J., Yang, W.Z., Wang, S.N., Zhang, H.J., Yang, Y., Bao, X.K., Zhang, Y.M., 2020. Effects of environmental metal pollution on reproduction of a free-living resident songbird, the tree sparrow (Passer montanus). Sci. Total Environ. 721, 137674. https://doi.org/10.1016/j.scitotenv.2020.137674.
Ding, J., Yang, W.Z., Wang, S.N., Zhang, H.J., Zhang, Y.M., 2022. Does environmental metal pollution affect bird morphometry? A case study on the tree sparrow Passer montanus. Chemosphere 295, 133947. https://doi.org/10.1016/j.chemosphere.2022.133947.
Ding, J., Yang, W.Z., Yang, Y., Ai, S.W., Bai, X.J., Zhang, Y.M., 2019. Variations in tree sparrow (Passer montanus) egg characteristics under environmental metal pollution. Sci. Total Environ. 687, 946–955. https://doi.org/10.1016/j.scitotenv.2019.06.140.
Dixon, L.M., Sparks, N.H.C., Rutherford, K.M.D., 2016. Early experiences matter: a review of the effects of prenatal environment on offspring characteristics in poultry. Poultry Sci. 95, 489–499. https://doi.org/10.3382/ps/pev343.
Eeva, T., Ahola, M., Lehikoinen, E., 2009. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131. https://doi.org/10.1016/j.envpol.2009.05.040.
Eeva, T., Lehikoinen, E., 1995. Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia 102, 312–323. https://doi.org/10.1007/BF00329798.
Forbes, S., 2009. Portfolio theory and how parent birds manage investment risk. Oikos 118, 1561–1569. https://doi.org/10.1111/j.1600-0706.2009.17702.x.
Forbes, S., Thornton, S., Glassey, B., Forbes, M., Buckley, N.J., 1997. Why parent birds play favourites. Nature 390, 351–352.
Forbes, S., Wiebe, M., 2010. Egg size and asymmetric sibling rivalry in red-winged blackbirds. Oecologia 163, 361–372. https://doi.org/10.1007/s00442-010-1629-x.
Gosler, A.G., Higham, J.P., James Reynolds, S., 2005. Why are birds' eggs speckled? Ecol. Lett. 8, 1105–1113. https://doi.org/10.1111/j.1461-0248.2005.00816.x.
Hall, M.E., Blount, J.D., Forbes, S., Royle, N.J., 2010. Does oxidative stress mediate the trade‐off between growth and self‐maintenance in structured families? Funct. Ecol. 24, 365–373. https://doi.org/10.1111/j.1365-2435.2009.01635.x.
Hargitai, R., Nagy, G., Herényi, M., Török, J., 2013. Effects of experimental calcium availability, egg parameters and laying order on great tit Parus major eggshell pigmentation patterns. Ibis 155, 561–570. https://doi.org/10.1111/ibi.12054.
Hargitai, R., Nagy, G., Nyiri, Z., Bervoets, L., Eke, Z., Eens, M., Török, J., 2016. Effects of breeding habitat (woodland versus urban) and metal pollution on the egg characteristics of great tits (Parus major). Sci. Total Environ. 544, 31–38. https://doi.org/10.1016/j.scitotenv.2015.11.116.
Kilner, R.M., 2006. The evolution of egg colour and patterning in birds. Biol. Rev. 81, 383–406. https://doi.org/10.1017/S1464793106007044.
Krist, M., 2011. Egg size and offspring quality: a meta‐analysis in birds. Biol. Rev. 86, 692–716. https://doi.org/10.1111/j.1469-185X.2010.00166.x.
Kvalnes, T., Ringsby, T.H., Jensen, H., Sæther, B.-E., 2013. Correlates of egg size variation in a population of house sparrow Passer domesticus. Oecologia 171, 391–402. https://doi.org/10.1007/s00442-012-2437-2.
Liu, Z.P., 2003. Lead poisoning combined with cadmium in sheep and horses in the vicinity of non-ferrous metal smelters. Sci. Total Environ. 309, 117–126. https://doi.org/10.1016/S0048-9697(03)00011-1.
López de Hierro, M.D.G., De Neve, L., 2010. Pigment limitation and female reproductive characteristics influence egg shell spottiness and ground colour variation in the house sparrow (Passer domesticus). J. Ornithol. 151, 833–840. https://doi.org/10.1007/s10336-010-0520-1.
Mainwaring, M.C., Dickens, M., Hartley, I.R., 2010. Environmental and not maternal effects determine variation in offspring phenotypes in a passerine bird. J. Evol. Biol. 23, 1302–1311. https://doi.org/10.1111/j.1420-9101.2010.01997.x.
Martínez-Padilla, J., Dixon, H., Vergara, P., Pérez-Rodríguez, L., Fargallo, J.A., 2010. Does egg colouration reflect male condition in birds? Naturwissenschaften 97, 469–477.
Moreno, J., Osorno, J.L., 2003. Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality? Ecol. Lett. 6, 803–806. https://doi.org/10.1046/j.1461-0248.2003.00505.x.
Müller, W., Groothuis, T.G.G., Eising, C.M., Daan, S., Dijkstra, C., 2005. Within clutch co‐variation of egg mass and sex in the black‐headed gull. J. Evol. Biol. 18, 661–668. https://doi.org/10.1111/j.1420-9101.2004.00859.x.
Nam, D.H., Lee, D.P., 2006. Reproductive effects of heavy metal accumulation on breeding feral pigeons (Columba livia). Sci. Total Environ. 366, 682–687. https://doi.org/10.1016/j.scitotenv.2006.02.004.
Orłowski, G., Hałupka, L., Pokorny, P., Klimczuk, E., Sztwiertnia, H., Dobicki, W., 2016. Variation in egg size, shell thickness, and metal and calcium content in eggshells and egg contents in relation to laying order and embryonic development in a small passerine bird. Auk 133, 470–483. https://doi.org/10.1642/AUK-16-16.1.
Pan, C., Zheng, G.M., Zhang, Y.Y., 2008. Concentrations of metals in liver, muscle and feathers of tree sparrow: age, inter-clutch variability, gender, and species differences. B. Environ. Contam. Tox. 81, 558–560. https://doi.org/10.1007/s00128-007-9168-9.
Poláček, M., Griggio, M., Mikšík, I., Bartíková, M., Eckenfellner, M., Hoi, H., 2017. Eggshell coloration and its importance in postmating sexual selection. Ecol. Evol. 7, 941–949. https://doi.org/10.1002/ece3.2664.
Reed, W.L., Turner, A.M., Sotherland, P.R., 1999. Consequences of egg-size variation in the red-winged blackbird. Auk 116, 549–552. https://doi.org/10.2307/4089390.
Roff, D.A., 2002. Life History Evolution. Sinauer Associates, Sunderland, MA.
Rosivall, B., Szöllősi, E., Török, J., 2005. Maternal compensation for hatching asynchrony in the collared flycatcher Ficedula albicollis. J. Avian Biol. 36, 531–537. https://doi.org/10.1111/j.0908-8857.2005.03458.x.
Royle, N.J., Hartley, I.R., Parker, G.A., 2002. Begging for control: when are offspring solicitation behaviours honest? Trends Ecol. Evol. 17, 434–440. https://doi.org/10.1016/S0169-5347(02)02565-X.
Slagsvold, T., Sandvik, J., Rofstad, G., Lorentsen, Ö., Husby, M., 1984. On the adaptive value of intraclutch egg-size variation in birds. Auk 101, 685–697. https://doi.org/10.2307/4086895.
Smith, H.G., Bruun, M., 1998. The effect of egg size and habitat on starling nestling growth and survival. Oecologia 115, 59–63. https://doi.org/10.1007/s004420050491.
Tryjanowski, P., Sparks, T.H., Kuczyński, L., Kuźniak, S., 2004. Should avian egg size increase as a result of global warming? A case study using the red-backed shrike (Lanius collurio). J. Ornithol. 145, 264–268. https://doi.org/10.1007/s10336-004-0035-8.
Van Dyke, J.U., Beck, M.L., Jackson, B.P., Hopkins, W.A., 2013. Interspecific differences in egg production affect egg trace element concentrations after a coal fly ash spill. Environ. Sci. Technol. 47, 13763–13771. https://doi.org/10.1021/es401406c.
Whittingham, L.A., Dunn, P.O., Lifjeld, J.T., 2007. Egg mass influences nestling quality in tree swallows, but there is no differential allocation in relation to laying order or sex. Condor 109, 585–594. https://doi.org/10.1650/8247.1.
Wingfield, J.C., Sapolsky, R.M., 2003. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15, 711–724.
Yang, W.Z., Ding, J., Wang, S.N., Yang, Y., Song, G., Zhang, Y.M., 2020. Variation in genetic diversity of tree sparrow (Passer montanus) population in long-term environmental heavy metal polluted areas. Environ. Pollut. 263, 114396. https://doi.org/10.1016/j.envpol.2020.114396.
Yosef, R., Zduniak, P., 2008. Variation in clutch size, egg size variability and reproductive output in the Desert Finch (Rhodospiza obsoleta). J. Arid Environ. 72, 1631–1635. https://doi.org/10.1016/j.jaridenv.2008.03.019.