PDF (7.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Three subspecies of Black-tailed Godwit share non-breeding sites in the world’s largest river delta

Delip K. Dasa,b,c,1 ()Wouter M.G. Vansteelantc,dBingrun Zhuc,eShariful IslamaNaim KhandakaraMarco van der VeldefChris J. HassellgJesse R. Conklinb,cPierrick BocherhJos C.E.W. Hooijmeijerb,cYvonne I. Verkuilb,cTheunis Piersmab,c,i
Department of Zoology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands
BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân, University of Groningen, Zaailand 110, 8911 BN, Leeuwarden, the Netherlands
Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
Hunan Global Messenger Technology Co., Ltd, Changsha, 410205, China
Behavioural & Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, the Netherlands
Global Flyway Network, PO Box 3089, Broome, WA 6725, Australia
Littoral Environnement et Sociétés UMR LIENSs 7266 CNRS, La Rochelle University, 2 rue Olympe de Gouges, 17000, La Rochelle, France
NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, PO Box 59, Den Burg, 1790 AB, Texel, the Netherlands

Peer review under the responsibility of Editorial Office of Avian Research.

Show Author Information

Abstract

During the non-breeding season (September–April), Black-tailed Godwits (Limosa limosa) are commonly seen in coastal and inland wetlands of the Ganges-Brahmaputra-Meghna Delta in Bangladesh. We hypothesize that the Ganges-Brahmaputra-Meghna Delta, at the overlap between the Central Asian and East Asian–Australasian flyways, may host three subspecies that breed in disjunct areas of temperate and northern Asia: L. l. limosa, L. l. melanuroides, and L. l. bohaii. We used mitochondrial DNA (mtDNA) haplotype network and biometric analysis to determine subspecies in captured individuals, and deployed GPS–GSM transmitters to verify breeding areas of individuals with subspecies assignments. To test for differential habitat preferences, we sampled birds at two ecologically distinct habitats known to host the largest concentrations of non-breeding Black-tailed Godwits in Bangladesh: Nijhum Dweep National Park, a tidal coastal habitat with brackish water on the south-central coast, and Tanguar Haor (‘backmarsh’), a seasonal freshwater floodplain in the north. During the non-breeding seasons of 2021–2022. and 2022–2023., we sampled and measured 93 Black-tailed Godwits, 54 of which were equipped with GPS–GSM transmitters. Our mtDNA haplotype network analysis confirmed the presence of limosa, melanuroides, and bohaii subspecies at the study sites. Thus, indeed, Black-tailed Godwits subspecies, despite having distinct breeding ranges, exhibit (partially) overlapping non-breeding ranges in Asia. The subspecies composition differed significantly between sites, with limosa and bohaii dominating in Tanguar Haor and melanuroides in Nijhum Dweep. Of the 21 individuals that were tracked to their breeding grounds, 18 migrated to the expected breeding range of their respective subspecies. However, one bird with a limosa haplotype migrated to a known breeding area of bohaii, whereas two birds with melanuroides haplotypes migrated to the supposed breeding range of limosa. Therefore, while ecological factors at both ends of the flyways may shape the morphological and behavioural differences between Black-tailed Godwit subspecies, their delineations and possible gene flow require further studies.

References

 

Alam, A.B.M.S., Ahmed, S., Azmiri, K.Z., Amin, R., Toor, M.L. van, Datta, A.K., et al., 2023. Population trends and effects of local environmental factors on waterbirds at Tanguar Haor freshwater wetland complex in northeast Bangladesh. Avian Conserv. Ecol. 18, 18

 
Ali, S., Ripley, D., 1983. Handbook of the Birds of India and Pakistan, Compact. Oxford University Press, Delhi.
 

Alves, J.A., Gunnarsson, T.G., Potts, P.M., Sutherland, W.J., Gill, J.A., 2013. Sex-biases in distribution and resource use at different spatial scales in a migratory shorebird. Ecol. Evol. 3, 1079–1090.

 

Alves, J.A., Lourenço, P.M., Piersma, T., Sutherland, W.J., Gill, J.A., 2010. Population overlap and habitat segregation in wintering Black‐tailed Godwits Limosa limosa. Bird Study 57, 381–391.

 
Amelon, S., Dalton, D., Millspaugh, J., Wolf, S., 2009. Radiotelemetry: techniques and analysis. In: Kunz, T.H., Parsons, S. (Eds.), Ecological and Behavioral Methods for the Study of Bats. Johns Hopkins University Press, Baltimore, USA, pp. 57–77.
 

Bamford, M., Watkins, D., Bancroft, W., Tischler, G., Wahl, J., 2008. Migratory shorebirds of the East Asian–Australasian flyway: population estimates and internationally important sites. Wetlands International – Oceania.

 

Barron, D.G., Brawn, J.D., Weatherhead, P.J., 2010. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187.

 

Basso, E., Ruiz, J., Linscott, J.A., Senner, N.R., Weegman, M., Ballard, B., et al., 2024. Movement ecology during non-breeding season in a long-distance migratory shorebird: are space use and movement patterns sex-biased? Behav. Ecol. Sociobiol. 78, 67

 

Bellefontaine, S.C., Hamilton, D.J., 2023. Shorebirds exhibit niche partitioning on multiple dimensions at a small staging site on the Northumberland Strait, New Brunswick, Canada. Facets 8, 1–12.

 
BirdLife International, 2023. Species factsheet: Limosa limosa. BirdLife data zone. http://datazone.birdlife.org/species/factsheet/black-tailed-godwit-limosa-limosa.(Accessed 27 June 2023).
 

Bom, R.A., Piersma, T., Alves, J.A., Rakhimberdiev, E., 2024. Global temperature homogenization can obliterate temporal isolation in migratory animals with potential loss of population structure. Glob. Change Biol. 30, e17069

 

Boulet, M., Norris, D.R., 2006. Introduction: the past and present of migratory connectivity. Ornithol. Monogr. 61, 1–13.

 
Catry, P., Phillips, R.A., Croxall, J.P., 2006. Sexual segregation in birds: patterns, processes and implications for conservation. In: Ruckstuhl, K., Neuhaus, P. (Eds.), Sexual Segregation in Vertebrates. Cambridge University Press, UK, pp. 351–378.
 

Chakraborty, A., Walter, G.M., Monro, K., Alves, A.N., Mirth, C.K., Sgrò, C.M., 2023. Within‐population variation in body size plasticity in response to combined nutritional and thermal stress is partially independent from variation in development time. J. Evol. Biol. 36, 264–279.

 
Conradt, L., 2006. Definitions, hypotheses, models and measures in the study of animal segregation. In: Ruckstuhl, K., Neuhaus, P. (Eds.), Sexual Segregation in Vertebrates. Cambridge University Press, Cambridge, UK, pp. 11–32.
 

Das, D.K., Khandakar, N., Sultana, I., Islam, S., Ali, MdS., Galib, A.J., et al., 2022. Site use by non-breeding black-tailed godwits at Nijhum Dweep national park, Bangladesh. Wader Study 129, 14–21.

 

Dick, W.J.A., Piersma, T., Prokosch, P., 1987. Spring migration of the siberian knots Calidris canutus canutus: results of a co-operative wader study group project. Ornis Scand. 18, 5–16.

 

Dixon, A., Sokolov, A., Sokolov, V., 2012. The subspecies and migration of breeding peregrines in northern Eurasia. Falco 39, 4–9.

 

Durell, S.E.A.L.D., 2000. Individual feeding specialisation in shorebirds: population consequences and conservation implications. Biol. Rev. 75, 503–518.

 

Esler, D., 2000. Applying metapopulation theory to conservation of migratory birds. Conserv. Biol. 14, 366–372.

 

Fordyce, J.A., 2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383.

 

Grant, B.R., Grant, P.R., 1979. Darwin's finches: population variation and sympatric speciation. Proc. Natl. Acad. Sci. U.S.A. 76, 2359–2363.

 

Grant, P.R., 1968. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Zool. 17, 319–333.

 

Hamilton, T.H., 1961. The adaptive significances of intraspecific trends of variation in wing length and body size among bird species. Evolution 15, 180–195.

 

Höglund, J., Johansson, T., Beintema, A., Schekkerman, H., 2009. Phylogeography of the Black-tailed Godwit Limosa limosa: substructuring revealed by mtDNA control region sequences. J. Ornithol. 150, 45–53.

 

Hossain, K.T., Salauddin, M., Tanim, I.A., 2016. Assessment of the dynamics of coastal island in Bangladesh using geospatial techniques: domar Char. J. Asiat. Soc. Bangladesh. Sci. 42, 219–228.

 
IUCN Bangladesh, 2015. Tanguar Haor Management Plan Framework and Guidelines. IUCN Bangladesh, Dhaka, Bangladesh.
 

Ivey, G.L., Dugger, B.D., Herziger, C.P., Casazza, M.L., Fleskes, J.P., 2015. Wintering ecology of sympatric subspecies of Sandhill Crane: correlations between body size, site fidelity, and movement patterns. Condor 117, 518–529.

 
Khan, M.M.H., 2018. Photographic Guide to the Wildlife of Bangladesh. Arannayk Foundation, Dhaka, Bangladesh.
 
Kranstauber, B., Smolla, M., Scharf, A.K., 2023. move: Visualizing and analyzing animal track data. https://cran.r-project.org/web//packages/move/move.pdf.
 

Lagassé, B., Lanctot, R., Barter, M., Brown, S., Chiang, C.-Y., Choi, C.-Y., et al., 2020. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian-Australasian Flyway. Condor 122, 1–15.

 

Lisovski, S., Hoye, B.J., Conklin, J.R., Battley, P.F., Fuller, R.A., Gosbell, K.B., et al., 2024. Predicting resilience of migratory birds to environmental change. Proc. Natl. Acad. Sci. U.S.A. 121, e2311146121

 

Loonstra, A.H.J., Verhoeven, M.A., Both, C., Piersma, T., 2023. Translocation of shorebird siblings shows intraspecific variation in migration routines to arise after fledging. Curr. Biol. 33, 2535–2540.

 

Lopes, R.J., Alves, J.A., Gill, J.A., Gunnarsson, T.G., Hooijmeijer, J.C.E.W., Lourenço, P.M., et al., 2013. Do different subspecies of Black-tailed Godwit Limosa limosa overlap in Iberian wintering and staging areas? Validation with genetic markers. J. Ornithol. 154, 35–40.

 

Masero, J.A., Santiago-Quesada, F., Sanchez-Guzman, J.M., Abad-Gomez, J.M., Villegas, A., Albano, N., 2009. Geographical origin, return rates, and movements of the near-threatened Black-tailed Godwits Limosa limosa staying at a major stopover site of Iberia. ARDEOLA 56, 253–258.

 

Murray, N.J., Marra, P.P., Fuller, R.A., Clemens, R.S., Dhanjal‐Adams, K., Gosbell, K.B., et al., 2018. The large‐scale drivers of population declines in a long‐distance migratory shorebird. Ecography 41, 867–876.

 

Nosil, P., Vines, T.H., Funk, D.J., 2005. Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59, 705–719.

 

Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S., Blackburn, T.M., et al., 2009. Global biogeography and ecology of body size in birds. Ecol. Lett. 12, 249–259.

 
Paradis, E., Jombart, T., Kamvar, Z.N., Knaus, B., Schliep, K., Potts, A., et al., 2023. Pegas: Population and Evolutionary Genetics Analysis System.
 

Piersma, T., Jukema, J., 2002. Budgeting the flight of a long-distance migrant: changes in nutrient reserve levels of Bar-tailed Godwits at successive spring staging sites. Ardea 78, 315–337.

 
Piersma, T., Rogers, D.I., Gonzalez, ´ P.M., Zwarts, L., Niles, L.J., Lima, I. de, et al., 2005. Fuel storage rates before northward flights in Red Knots worldwide. In: Greenberg, R., Marra, P.P. (Eds.), Birds of Two Worlds: the Ecology and Evolution of Migration. Johns Hopkins University Press, Baltimore, Maryland, pp. 262–274.
 
Prater, A.J., Prater, T., Marchant, J., Vuorinen, J., 1977. Guide to the identification and ageing of holarctic waders, BTO guide. British Trust for Ornithology.
 

Puttick, G.M., 1981. Sex-related differences in foraging behaviour of Curlew Sandpipers. Ornis Scand. 12, 13–17.

 
Rasmussen, P.C., Anderton, J.C., 2005. Birds of South Asia: the Ripley Guide. Lynx Edicions, Barcelona, Spain.
 
Sangha, H.S., 2021. Waders of the Indian Subcontinent. Harkirat Singh Sangha, Jaipur.
 

Selander, R.K., 1966. Sexual dimorphism and differential niche utilization in birds. Condor 68, 113–151.

 

Slatkin, M., 1985. Gene flow in natural populations. Annu. Rev. Ecol. Systemat. 16, 393–430.

 

Smith, P.C., Evans, P.R., 1973. Studies of shorebirds at lindisfarne, northumberland. 1. Feeding ecology and behaviour of the bar-tailed godwit. Wildfowl 24, 135–139.

 
Töpfer, T., 2018. Morphological variation in birds: plasticity, adaptation, and speciation. In: Tietze, D.T. (Ed.), Bird Species, Fascinating Life Sciences. Springer International Publishing, Cham, pp. 63–74.
 

Townsend, J.M., Rimmer, C.C., Mcfarland, K.P., Goetz, J.E., 2012. Site-specific variation in food resources, sex ratios, and body condition of an overwintering migrant songbird. Auk 129, 683–690.

 

van Bemmelen, R.S.A., Kolbeinsson, Y., Ramos, R., Gilg, O., Alves, J.A., Smith, M., et al., 2019. A migratory divide among Red-Necked Phalaropes in the Western Palearctic reveals contrasting migration and wintering movement strategies. Front. Ecol. Evol. 7, 86

 

van der Velde, M., Haddrath, O., Verkuil, Y.I., Baker, A.J., Piersma, T., 2017. New primers for molecular sex identification of waders. Wader Study 124, 147–151.

 
van Gils, J., Wiersma, P., Christie, D., Garcia, E., Boesman, P.F.D., 2020. Black-tailed Godwit (Limosa limosa). In: Billerman, S.M., Keeney, B.K., Rodewald, P.G., Schulenberg, T.S. (Eds.), Birds of the World. Cornell Lab of Ornithology.
 

Verhoeven, M.A., Loonstra, A.H.J., McBride, A.D., Both, C., Senner, N.R., Piersma, T., 2021. Migration route, stopping sites, and non-breeding destinations of adult Black-tailed Godwits breeding in southwest Fryslân, The Netherlands. J. Ornithol. 162, 61–76.

 
Webster, M.S., Marra, P.P., 2005. The importance of understanding migratory connectivity and seasonal interactions. In: Greenberg, R., Marra, P.P. (Eds.), Birds of Two Worlds: The Ecology and Evolution of Migration. Johns Hopkins University Press, Baltimore, Maryland, pp. 199–209.
 
Zhu, B.R., 2023. Asian Black-tailed Godwits as New Players in Comparative Approaches to Morphology, Sexual Size Dimorphism and Flyway Ecology. Doctoral Thesis. University of Groningen, The Netherlands.
 

Zhu, B.R., Hassell, C.J., Verkuil, Y.I., Gunnarson, T.G., Hooijmeijer, J.C.E.W., Zhang, Z., et al., 2020. Size, shape and sex differences in three subspecies of Black-tailed Godwits Limosa limosa. Bird Study 67, 45–52.

 

Zhu, B.R., Verhoeven, M.A., Hassell, C.J., Leung, K.K.-S., Dorofeev, D., Ma, Q., et al., 2023. Predicting the non-breeding distributions of the two Asian subspecies of Black-tailed Godwit using morphological information. Avian Res. 14, 100069

 

Zhu, B.R., Verhoeven, M.A., Loonstra, A.H.J., Sanchez-Aguilar, L., Hassell, C.J., Leung, K.K.-S., et al., 2021. Identification of breeding grounds and annual routines of the newly discovered bohaii subspecies of Black-tailed Godwits. Emu – Austral Ornithol 121, 292–302.

 

Zhu, B.R., Verhoeven, M.A., Velasco, N., Sanchez‐Aguilar, L., Zhang, Z., Piersma, T., 2022. Current breeding distributions and predicted range shifts under climate change in two subspecies of Black‐tailed Godwits in Asia. Glob. Change Biol. 28, 5416–5426.

 

Zhu, B.R., Verkuil, Y.I., Conklin, J.R., Yang, A., Lei, W., Alves, J.A., et al., 2021. Discovery of a morphologically and genetically distinct population of black-tailed godwits in the East Asian-Australasian flyway. Ibis 163, 448–462.

 

Zimova, M., Weeks, B.C., Willard, D.E., Giery, S.T., Jirinec, V., Burner, R.C., et al., 2023. Body size predicts the rate of contemporary morphological change in birds. Proc. Natl. Acad. Sci. U.S.A. 120, e2206971120

 

Zwarts, L., 1988. Numbers and distribution of coastal waders in Guinea-Bissau. Ardea 76, 42–55.

Avian Research
Cite this article:
Das DK, Vansteelant WM, Zhu B, et al. Three subspecies of Black-tailed Godwit share non-breeding sites in the world’s largest river delta. Avian Research, 2025, 16(1). https://doi.org/10.1016/j.avrs.2025.100226
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return