The process of agricultural intensification has led to significant reductions in biodiversity globally. Previous studies examined the role of semi-natural habitats within agroecosystems in supporting bird communities, but few have considered the effects of landscape agricultural intensity on avian conservation potential of semi-natural habitats. Here, we disentangle the relative effects of semi-natural habitats within different landscape agricultural intensities on bird community composition in central and eastern Jilin Province, China. We established 322 sampling sites distributed across low, middle, and high landscape agricultural intensities, with 103, 118, and 101 sites respectively. Each sampling site was visited two times in May and June 2023 to test the dissimilarities in bird composition between different landscape agricultural intensities. We found that middle-intensity agriculture supported the highest bird diversity in most cases, but low-intensity plays an important role in maintaining insectivorous birds. We used generalized linear models and model selection to assess the relative impacts of semi-natural habitats on bird community along agricultural intensity respectively. Our results showed that the effects of agriculture on bird communities were predominantly influenced by the amount of semi-natural habitats, with effects that differ in accordance with the level of landscape agricultural intensity. Priority should be given to preserve or/and plant these semi-natural habitats in middle-intensity agriculture due to the stronger effect sizes on bird diversity. Specifically, we suggested preserving and promoting woodlands and shrubs in high-intensity agriculture, and simultaneously increasing crop diversity to protect bird diversity in agriculture landscapes in the context of increasing crop intensification globally.
Andersen, E.M., Steidl, R.J., 2020. Plant invasions alter settlement patterns of breeding grassland birds. Ecosphere 11, 1. https://doi.org/10.1002/ecs2.3012.
Assandri, G., Bogliani, G., Pedrini, P., Brambilla, M., 2016. Diversity in the monotony? Habitat traits and management practices shape avian communities in intensive vineyards. Agric. Ecosyst. Environ. 223, 250–260. https://doi.org/10.1016/j.agee.2016.03.014.
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48. https://doi.org/10.18637/jss.v067.i01.
Beecher, N.A., Johnson, R.J., Brandle, J.R., Case, R.M., Young, L.J., 2002. Agroecology of birds in organic and nonorganic farmland. Conserv. Biol. 16, 1620–1631. https://doi.org/10.1046/j.1523-1739.2002.01228.x.
Benton, T.G., Vickery, J.A., Wilson, J.D., 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9.
Bradbury, R.B., Kirby, W.B., 2006. Farmland birds and resource protection in the UK: cross-cutting solutions for multi-functional farming? Biol. Conserv. 129, 530–542. https://doi.org/10.1016/j.biocon.2005.11.020.
Butler, S.J., Vickery, J.A., Norris, K., 2007. Farmland biodiversity and the footprint of agriculture. Science 315, 381e384. https://doi.org/10.1126/science.1136607.
Chamberlain, D.E., Joys, A., Johnson, P.J., Norton, L., Feber, R.E., Fuller, R.J., 2010. Does organic farming benefit farmland birds in winter? Biol. Lett. 6, 82–84. https://doi.org/10.1098/rsbl.2009.0643.
Chiron, F., Chargé, R., Julliard, R., Jiguet, F., Muratet, A., 2014. Pesticide doses, landscape structure and their relative effects on farmland birds. Agric. Ecosyst. Environ. 185, 153–160. https://doi.org/10.1016/j.agee.2013.12.013.
Conover, R.R., Burger, L.W., Linder, E.T., 2009. Breeding bird response to field border presence and width. Wilson J. Ornithol. 121, 548–555. https://doi.org/10.1676/08-082.1.
Donald, R.F., Green, R.E., Heath, M.F., 2001. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B-Biol. Sci. 268, 25–29. https://doi.org/10.1098/rspb.2000.1325.
Douglas, D.J.T., Waldinger, J., Buckmire, Z., Gibb, K., Medina, J.P., Sutcliffe, L., et al., 2023. A global review identifies agriculture as the main threat to declining grassland birds. Ibis 165, 1107–1128. https://doi.org/10.1111/ibi.13223.
Doxa, A., Bas, Y., Paracchini, M.L., Pointereau, P., Terres, J.M., Jiguet, F., 2010. Low-intensity agriculture increases farmland bird abundances in France. J. Appl. Ecol. 47, 1348–1356. https://doi.org/10.1111/j.1365-2664.2010.01869.x.
Edwards, D.P., Hodgson, J.A., Hamer, K.C., Mitchell, S.L., Ahmad, A.H., Cornell, S.J., Wilcove, D.S., 2010. Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv. Lett. 3, 236–242. https://doi.org/10.1111/j.1755-263X.2010.00107.x.
Elsen, P.R., Kalyanaraman, R., Ramesh, K., Wilcove, D.S., 2017. The importance of agricultural lands for Himalayan birds in winter. Conserv. Biol. 31, 416–426. https://doi.org/10.1111/cobi.12812.
Elsen, P.R., Monahan, W.B., Merenlender, A.M., 2018. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl. Acad. Sci. U.S.A. 115, 6004–6009. https://doi.org/10.1073/pnas.17201.
Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., et al., 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agric. Ecosyst. Environ. 200, 219–234. https://doi.org/10.1016/j.agee.2014.11.018.
Fischer, C., Flohre, A., Clement, L.W., Batary, P., Weisser, W.W., Tscharntke, T., et al., 2011. Mixed effects of landscape structure and farming practice on bird diversity. Agric. Ecosyst. Environ. 141, 119–125. doi:10.1016/j.agee.2011.02.021.
Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., et al., 2011. Solutions for a cultivated planet. Nature 478, 337–342. https://doi.org/10.1038/nature10452.
Frid, A., Dill, L., 2002. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11. http://www.consecol.org/vol6/iss1/art11/.
Garcia, K., Olimpi, E.M., M'Gonigle, L., Karp, D.S., Wilson-Rankin, E.E., Kremen, C., et al., 2023. Semi-natural habitats on organic strawberry farms and in surrounding landscapes promote bird biodiversity and pest control potential. Agric. Ecosyst. Environ. 347, 108353. https://doi.org/10.1016/j.agee.2023.108353.
García-Feced, C., Weissteiner, C.J., Baraldi, A., Paracchini, M.L., Maes, J., Zulian, G., et al., 2015. Semi-natural vegetation in agricultural land: European map and links to ecosystem service supply. Agron. Sustain. Dev. 35, 273–283. https://doi.org/10.1007/s13593-014-0238-1.
Gittleman, J.L., Kot, M., 1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241.
Green, R.E., Cornell, S.J., Scharlemann, J.P.W., Balmford, A., 2005. Farming and the fate of wild nature. Science 307, 550–555. https://doi.org/10.1126/science.1106049.
Gregory, R.D., van Strien, A., Vorisek, P., Gmelig Meyling, A.W., Noble, D.G., Foppen, R.P.B., et al., 2005. Developing indicators for European birds. Philos. Trans. R. Soc. B 360, 269–288. https://doi.org/10.1098/rstb.2004.1602.
Gregory, R.D., Vorisek, P., van Strien, A., Gmelig Meyling, A.W., Jiguet, F., Fornasari, L., et al., 2007. Population trends of widespread woodland birds in Europe. Ibis 149, 78–97. https://doi.org/10.1111/j.1474-919X.2007.00698.x.
Guerrero-Casado, J., Dylewski, Ł., Rosin, Z.M., Skórka, P., Wuczyński, A., Tobolka, M., 2023. Spatial and thematic bias in the scientific literature on farmland birds across the globe. Eur. Zool. J. 90, 775–789. https://doi.org/10.1080/24750263.2023.2273389.
Guyot, C., Arlettaz, R., Korner, P., Jacot, A., 2017. Temporal and spatial scales matter: circannual habitat selection by bird communities in vineyards. PLoS One 12, 1–28. https://doi.org/10.1371/journal.pone.0170176.
Hartig, F., 2021. DHARMa: residual diagnostics for hierarchical (Multi-Level/mixed) regression models. R package version 0.4.1.
Hempson, G.P., Illius, A.W., Hendricks, H.H., Bond, W.J., Vetter, S., 2015. Herbivore population regulation and resource heterogeneity in a stochastic environment. Ecology 96, 2170–2180. https://doi.org/10.1890/14-1501.1.
Henderson, I.G., Ravenscroft, N., Smith, G., Holloway, S., 2009. Effects of crop diversification and low pesticide inputs on bird populations on arable land. Agric. Ecosyst. Environ. 129, 149–156. https://doi.org/10.1016/j.agee.2008.08.014.
Herve, M., 2021. RVAideMemoire: testing and plotting procedures forBiostatistics. R package version 0.9–79. https://CRAN.R-project.org/package=RVAideMemoire.
Hijmans, R., Van Etten, J., 2012. Raster: geographic data analysis and modelling. R package version.
Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biom. J. 50, 346–363. https://doi.org/10.1002/bimj.200810425.
Hutto, R.L., Pletschet, S.M., Hendricks, P., 1986. A fixed-radius point count method for nonbreeding and breeding season use. Ornithology 103, 593–602. https://doi.org/10.1093/auk/103.3.593.
Josefsson, J., Berg, Å., Hiron, M., Pärt, T., Eggers, S., 2017. Sensitivity of the farmland bird community to crop diversification in Sweden: does the CAP fit? J. Appl. Ecol. 52, 518–526. https://doi.org/10.1111/1365-2664.12779.
Karp, D.S., Rominger, A.J., Zook, J., Ranganathan, J., Ehrlich, P.R., Daily, G.C., 2012. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15, 963–970. https://doi.org/10.1111/j.1461-0248.2012.01815.x.
Katuwal, H.B., Rai, J., Tomlinson, K., Rimal, B., Sharma, H.P., Baral, H.S., et al., 2022. Seasonal variation and crop diversity shape the composition of bird communities in agricultural landscapes in Nepal. Agric. Ecosyst. Environ. 333, 107973. https://doi.org/10.1016/j.agee.2022.107973.
Khan, S., Fahrig, L., Martin, A.E., 2023. Support for an area–heterogeneity tradeoff for biodiversity in croplands. Ecol. Appl. 33, e2820. https://doi.org/10.1002/eap.2820.
Korejs, K., Sálek, M., Bejcek, V., Musil, P., Stastny, K., Volf, O., Riegert, J., 2024. Nine-year bird community development on Radovesická spoil heap: impacts of restoration approach and vegetation characteristics. Landsc. Ecol. Eng. 20, 89–102. https://doi.org/10.1007/s11355-023-00582-6.
Kremen, C., 2020. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 4, 229–240. https://doi.org/10.1042/ETLS20190205.
Kremen, C., Miles, A., 2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40. https://doi.org/10.5751/ES-05035-170440.
Le Brocque, A.F., Goodhew, K.A., Zammit, C.A., 2009. Overstorey tree density and understorey regrowth effects on plant composition, stand structure and floristic richness in grazed temperate woodlands in eastern Australia. Agric. Ecosyst. Environ. 129, 17–27. https://doi.org/10.1016/j.agee.2008.06.011.
Lee, M.B., Goodale, E., 2018. Crop heterogeneity and non-crop vegetation can enhance avian diversity in a tropical agricultural landscape in southern China. Agric. Ecosyst. Environ. 265, 254–263. https://doi.org/10.1016/j.agee.2018.06.016.
Lee, M.B., Chen, D.J., Liu, F.Y., Zhou, F.S., 2024. Effects of spatial and temporal crop changes on bird diversity in peri-urban agricultural lands. Basic Appl. Ecol. 80, 138–145. https://doi.org/10.1016/j.baae.2024.09.007.
Lindenmayer, D.B., Blanchard, W., Evans, M.J., Beggs, R., Lavery, T., Florance, D., et al., 2023. Context dependency in interference competition among birds in an endangered woodland ecosystem. Divers. Distrib. 29, 556–571. https://doi.org/10.1111/ddi.13680.
Lindsay, K.E., Kirk, D.A., Bergin, T.M., Best, L.B., Sifneos, J.C., Smith, J., 2013. Farmland heterogeneity benefits birds in America mid-west watersheds. Am. Midl. Nat. 170, 121–143. https://doi.org/10.1674/0003-0031-170.1.121.
Liu, Y., Duan, M., Zhenrong, Y., 2013. Agricultural landscapes and biodiversity in China. Agric. Ecosyst. Environ. 166, 46–54. https://doi.org/10.1016/j.agee.2011.05.009.
Lukacs, P.M., Burnham, K.P., Anderson, D.R., 2009. Model selection bias and Freedman’s paradox. Ann. Inst. Stat. Math. 62, 117–125. https://doi.org/10.1007/s10463-009-0234-4.
Marcacci, G., Gremion, J., Mazenauer, J., Sori, T., Kebede, F., Ewnetu, M., et al., 2020. Large-scale versus small-scale agriculture: disentangling the relative effects of the farming system and semi-natural habitats on birds' habitat preferences in the Ethiopian highlands. Agric. Ecosyst. Environ. 289, 106737. https://doi.org/10.1016/j.agee.
Marcacci, G., Gremion, J., Mazenauer, J., Sori, T., Kebede, F., Ewnetu, M., et al., 2022. High semi-natural vegetation cover and heterogeneity of field sizes promote bird beta-diversity at larger scales in Ethiopian Highlands. J. Appl. Ecol. 59, 1219–1230. https://doi.org/10.1111/1365-2664.14134.
McKinney, M.L., Lockwood, J.L., 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453. https://doi.org/10.1016/S0169-5347(99)01679-1.
Morelli, F., Benedetti, Y., Ibáñez-Alamo, J.D., Tryjanowski, P., Jokimäki, J., Kaisanlahti-Jokimäki, M.L., et al., 2021. Effects of urbanization on taxonomic, functional and phylogenetic avian diversity in Europe. Sci. Total Environ. 795, 148874. https://doi.org/10.1016/j.scitotenv.2021.148874.
Narayana, B.L., Rao, V.V., Venkateswara Reddy, V., 2019. Composition of birds in agricultural landscapes of peddagattu and sherpally area: a proposed uranium mining sites in Nalgonda, Telangana, India. Proc. Zool. Soc. 72, 380–400. https://doi.org/10.1007/s12595-018-0280-0.
Oksanen, J., Blanchet, F.J., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al., 2020. Vegan: community ecology package. R package version 2, 5–7. https://CRAN.R-project.org/package=vegan.
Olimpi, E.M., Garcia, K., Gonthier, D.J., Kremen, C., Snyder, W.E., Wilson-Rankin, E.E., et al., 2022. Semi-natural habitat surrounding farms promotes multifunctionality in avian ecosystem services. J. Appl. Ecol. 59, 898–908. https://doi.org/10.1111/1365-2664.14124.
Petit, M., Celis, C., Weideman, C., Gouin, N., Bertin, A., 2023. Effects of land cover and habitat condition on the bird community along a gradient of agricultural development within an arid watershed of Chile. Agric. Ecosyst. Environ. 356, 108635.
Redlich, S., Martin, E.A., Steffan-Dewenter, I., 2018. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419–2428. https://doi.org/10.1111/1365-2664.13126.
Reif, J., Hanzelka, J., 2020. Continent-wide gradients in open-habitat insectivorous bird declines track spatial patterns in agricultural intensity across Europe. Global Ecol. Biogeogr. 29, 1988–2013. https://doi.org/10.1111/geb.13170.
Rosin, Z.M., Part, T., Low, M., Kotowska, D., Tobolka, M., Szymanski, P., et al., 2021. Village modernization may contribute more to farmland bird declines than agricultural intensification. Conserv. Lett. 14, e12843. https://doi.org/10.1111/conl.12843.
Saari, S., Richter, S., Higgins, M., Oberhofer, M., Jennings, A., Faeth, S.H., 2016. Urbanization is not associated with increased abundance or decreased richness of terrestrial animals – dissecting the literature through meta-analysis. Urban Ecosyst. 19, 1251–1264. https://doi.org/10.1007/s11252-016-0549-x.
Sam, K., Koane, B., Bardos, D.C., Jeppy, S., Novotny, V., 2019. Species richness of birds along a complete rain forest elevational gradient in the tropics: habitat complexity and food resources matter. J. Biogeogr. 46, 279–290. https://doi.org/10.1111/jbi.13482.
Sebastián-González, E., Sánchez-Zapata, J.A., Botella, F., 2010. Agricultural ponds as alternative habitat for waterbirds: spatial and temporal patterns of abundance and management strategies. Eur. J. Wildl. Res. 56, 11–20. https://doi.org/10.1007/s10344-009-0288-x.
Shochat, E., Lerman, S.B., Anderies, J.M., Warren, P.S., Faeth, S.H., Nilon, C.H., 2010. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208. https://doi.org/10.1525/bio.2010.60.3.6.
Smith, H., Ockinger, E., Rundlof, M., 2010. Biodiversity and the landscape ecology of agri-environment schemes. Aspect Appl. Biol. 100, 225–232. https://doi.org/10.1007/s10743-010-9079-1.
Stanton, R.A., Fletcher, R.J., Sibiya, M., Monadjem, A., McCleery, R.A., 2021. The effects of shrub encroachment on bird occupancy vary with land use in an African savanna. Anim. Conserv. 24, 194–205. https://doi.org/10.1111/acv.12620.
Toms, J.D., Schmiegelow, F.K.A., Hannon, S.J., Villard, M.A., 2006. Are point counts of boreal songbirds reliable proxies for more intensive abundance estimators? Ornithology 123, 438–454. https://doi.org/10.7939/R37W00.
Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Thies, C., 2005. Landscape perspectives on agricultural intensification and biodiversity − ecosystem management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x.
Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., et al., 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59. https://doi.org/10.1016/j.biocon.2012.01.068.
Tschumi, M., Birkhofer, K., Blasiusson, S., Jörgensen, M., Smith, H.G., Ekroos, J., 2020. Woody elements benefit bird diversity to a larger extent than semi-natural grasslands in cereal-dominated landscapes. Basic Appl. Ecol. 46, 15–23. https://doi.org/10.1016/j.baae.2020.03.005.
Vos, C.C., Verboom, J., Opdam, P.F.M., Ter Braak, C.J.F., 2001. Toward ecologically scaled landscape indices. Am. Nat. 157, 24e41. https://doi.org/10.1086/317004.
Wang, Y., Song, Y.F., Zhong, Y.X., Chen, C.W., Zhao, Y.H., Ding, Z., et al., 2021. A dataset on the life-history and ecological traits of Chinese birds. Biodivers. Sci. 29, 1149.
Wilson, S., Mitchell, G.W., Pasher, J., McGovern, M., Hudson, M.A.R., Fahrig, L., 2017. Influence of crop type, heterogeneity and woody structure on avian biodiversity in agricultural landscapes. Ecol. Indic. 83, 218–226. https://doi.org/10.1016/j.ecolind.2017.07.059.
Wretenberg, J., Pärt, T., Berg, Å., 2010. Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biol. Conserv. 143, 375–381. https://doi.org/10.1016/j.biocon.2009.11.001.
Xu, Z.G., Xu, J.T., Deng, X.Z., Huang, J.K., Uchida, E., Rozelle, S., 2006. Grain for green versus grain: conflict between food security and conservation set-aside in China. World Dev. 34, 130–148. https://doi.org/10.1016/j.worlddev.2005.08.002.
Yahya, M.S., Atikah, S.N., Mukri, I., Sanusi, R., Norhisham, A.R., Azhar, B., 2022. Agroforestry orchards support greater avian biodiversity than monoculture oil palm and rubber tree plantations. For. Ecol. Manage. 513, 120177. https://doi.org/10.1016/j.foreco.2022.120177.
Zhao, X.R., Zhu, L., Guan, X.Y., Qian, C., Zhang, C., 2018. A Photographic Guide to the Birds of China. The Commercial Press, Beijing.
Zheng, G.M., 2011. Checklist on the Classification and Distribution of the Birds of China. Science Press, Beijing.
Zielonka, N.B., Shutt, J.D., Butler, S.J., Dicks, L.V., 2024. Management practices, and not surrounding habitats, drive bird and arthropod biodiversity within vineyards. Agric. Ecosyst. Environ. 367, 108982. https://doi.org/10.1016/j.agee.2024.108982.
Zingg, S., Grenz, J., Humbert, J.Y., 2018. Landscape-scale effects of land use intensity on birds and butterflies. Agric. Ecosyst. Environ. 267, 119–128. https://doi.org/10.1016/j.agee.2018.08.014.