Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The practical application of plastics is as indispensable as it is problematic regarding disposal. Plastics present significant opportunities in the context of circular usage and recycling. A circular economy dictates the utilization of every side stream to minimize waste. Current waste management techniques are insufficient in reducing plastic waste entering landfills, wastewater treatment systems, and the environment. Under these circumstances, plastic biodegradation has emerged as a viable and environmentally responsible approach to plastic pollution. Methods are needed for the natural degradation of plastics using microbes that can utilize plastics as their sole carbon source. Studies to enhance the catalytic activity of plastic-degrading enzymes through protein engineering approaches are a relatively new field of research. Enzymatic degradation for product creation represents a purely biological plastic recycling method in a sustainable economy. This review builds insights derived from previous studies and provides a brief overview of plastic degradation using enzymes, improvements in plastic-degrading enzyme efficiency, and stabilization via various protein engineering strategies. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering and future directions are discussed.
Adame-Gómez, R., Cruz-Facundo, I. M., García-Díaz, L. L., Ramírez-Sandoval, Y., Pérez-Valdespino, A., Ortuño-Pineda, C., Santiago-Dionisio, M. C., & Ramírez-Peralta, A. (2020). Biofilm production by enterotoxigenic strains of Bacillus cereus in different materials and under different environmental conditions. Microorganisms, 8, 1071.
Araújo, R., Silva, C., O'Neill, A., Micaelo, N., Guebitz, G., Soares, C. M., Casal, M., & Cavaco-Paulo, A. (2007). Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6, 6 fibers. Journal of Biotechnology, 128, 849–857.
Armenta, S., Moreno-Mendieta, S., Sánchez-Cuapio, Z., Sánchez, S., & Rodríguez-Sanoja, R. (2017). Advances in molecular engineering of carbohydrate-binding modules. Proteins: Structure, Function, and Bioinformatics, 85, 1602–1617.
Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S., & Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology, 7, 9–22.
Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., El Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., McGeehan, J. E., … Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 115, E4350–E4357.
Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15–21.
Barth, M., Honak, A., Oeser, T., Wei, R., Belisário-Ferrari, M. R., Then, J., Schmidt, J., & Zimmermann, W. (2016). A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnology Journal, 11, 1082–1087.
Biundo, A., Subagia, R., Maurer, M., Ribitsch, D., Syrén, P. O., & Guebitz, G. M. (2019). Switched reaction specificity in polyesterases towards amide bond hydrolysis by enzyme engineering. RSC Advances, 9, 36217–36226.
Blank, L. M., Narancic, T., Mampel, J., Tiso, T., & O'Connor, K. (2020). Biotechnological upcycling of plastic waste and other non-conventional feedstocks in a circular economy. Current Opinion in Biotechnology, 62, 212–219.
Bollinger, A., Thies, S., Knieps-Grünhagen, E., Gertzen, C., Kobus, S., Höppner, A., Ferrer, M., Gohlke, H., Smits, S. H. J., & Jaeger, K. E. (2020). A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri- Structural and functional insights. Frontiers in Microbiology, 11, 114.
Chauhan, D., Agrawal, G., Deshmukh, S., Roy, S. S., & Priyadarshini, R. (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances, 8, 37590–37599.
Chen, C. C., Dai, L., Ma, L., & Guo, R. T. (2020). Enzymatic degradation of plant biomass and synthetic polymers. Nature Reviews Chemistry, 4, 114–126.
Cui, Y.-L., Chen, Y., Liu, X., Dong, S., Tian, Y., Yuxin, Q., Mitra, R., Han, J., Li, C., Han, X., Liu, W., Chen, Q., Wei, W., Wang, X., Du, W., Tang, S., Xiang, H., Liu, H., Liang, Y., & Wu, B. (2021). Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catalysis, 11, 1340–1350.
del Mar Castro López, M., Ares Pernas, A. I., Abad López, M. J., Latorre, A. L., López Vilariño, J. M., & González Rodríguez, M. V. (2014). Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material. Materials Chemistry and Physics, 147, 884–894.
Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S., & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. Journal of Hazardous Materials, 380, Article 120899.
El Karoui, M., Hoyos-Flight, M., & Fletcher, L. (2019). Future trends in synthetic biology - a report. Frontiers in Bioengineering and Biotechnology, 7, 175.
Evangelopoulos, P., Arato, S., Persson, H., Kantarelis, E., & Yang, W. (2019). Reduction of brominated flame retardants (BFRs) in plastics from waste electrical and electronic equipment (WEEE) by solvent extraction and the influence on their thermal decomposition. Waste Management, 94, 165–171.
Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor, M., Parra, L. P., & Ramírez-Sarmiento, C. A. (2018). Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophysical Journal, 114, 1302–1312.
Franden, M. A., Jayakody, L. N., Li, W. J., Wagner, N. J., Cleveland, N. S., Michener, W. E., Hauer, B., Blank, L. M., Wierckx, N., Klebensberger, J., & Beckham, G. T. (2018). Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. Metabolic Engineering, 48, 197–207.
Gómez-Méndez, L. D., Moreno-Bayona, D. A., Poutou-Piñales, R. A., Salcedo-Reyes, J. C., Pedroza-Rodríguez, A. M., Vargas, A., & Bogoya, J. M. (2018). Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One, 13, Article e0203786.
Gamerith, Caroline, Herrero Acero, Enrique, Pellis, Alessandro, Ortner, Andreas, Vielnascher, Robert, Luschnig, Daniel, Zartl, Barbara, Haernvall, Karolina, Zitzenbacher, Sabine, Strohmeier, Gernot, Hoff, Oskar, Steinkellner, Georg, Gruber, Karl, Ribitsch, Doris, & Guebitz, Georg M. (2016). Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polymer Degradation and Stability, 132, 69–77.
Gao, R., Pan, H., Kai, L., Han, K., & Lian, J. (2022). Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World Journal of Microbiology and Biotechnology, 38, 89.
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, Article e1700782.
Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., & Fava, F. (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotech, 52, 35–41.
Groß, C., Hamacher, K., Schmitz, K., & Jager, S. (2017). Cleavage product accumulation decreases the activity of cutinase during PET hydrolysis. Journal of Chemical Information and Modeling, 57, 243–255.
Guzik, M. W., Kenny, S. T., Duane, G. F., Casey, E., Woods, T., Babu, R. P., Nikodinovic-Runic, J., Murray, M., & O'Connor, K. E. (2014). Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 98, 4223–4232.
Hamzah, H. T., Sridevi, V., Seereddi, M., Suriapparao, D. V., Ramesh, P., Sankar Rao, C., Gautam, R., Kaka, F., & Pritam, K. (2022). The role of solvent soaking and pretreatment temperature in microwave-assisted pyrolysis of waste tea powder: Analysis of products, synergy, pyrolysis index, and reaction mechanism. Bioresource Technology, 363, Article 127913.
Hamzah, H. T., Sridevi, V., Surya, D. V., Ramesh, P., Rao, C. S., Palla, S., & Abdullah, T. A. (2024). Synergistic effects and product yields in microwave-assisted in situ co-pyrolysis of rice straw and paraffin wax. Process Safety and Environmental Protection, 182, 45–55.
Herrero Acero, E., Ribitsch, D., Dellacher, A., Zitzenbacher, S., Marold, A., Steinkellner, G., Gruber, K., Schwab, H., & Guebitz, G. M. (2013). Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnology and Bioengineering, 110, 2581–2590.
Hiraishi, T., Komiya, N., & Maeda, M. (2010). Y443F mutation in the substrate-binding domain of extracellular PHB depolymerase enhances its PHB adsorption and disruption abilities. Polymer Degradation and Stability, 95, 1370–1374.
Huerta Lwanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757.
Johnston, B., Jiang, G., Hill, D., Adamus, G., Kwiecień, I., Zięba, M., Sikorska, W., Green, M., Kowalczuk, M., & Radecka, I. (2017). The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering, 4, 73.
Johnston, B., Radecka, I., Chiellini, E., Barsi, D., Ilieva, V. I., Sikorska, W., Musioł, M., Zięba, M., Chaber, P., Marek, A. A., et al. (2019). Mass spectrometry reveals molecular structure of polyhydroxyalkanoates attained by bioconversion of oxidized polypropylene waste fragments. Polymers, 11, 1580.
Joo, S., Cho, I. J., Seo, H., Son, H. F., Sagong, H. Y., Shin, T. J., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9, 382.
Kaushal, J., Khatri, M., & Arya, S. K. (2021). Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini - review. Cleaner Engineering and Technology, 2, Article 100083.
Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., Mizushima, H., Miyakawa, T., & Tanokura, M. (2014). A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 98, 10053–10064.
Kenny, S. T., Runic, J. N., Kaminsky, W., Woods, T., Babu, R. P., Keely, C. M., Blau, W., & O'Connor, K. E. (2008). Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environmental Science & Technology, 42, 7696–7701.
Kenny, S. T., Runic, J. N., Kaminsky, W., Woods, T., Babu, R. P., & O'Connor, K. E. (2012). Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Applied Microbiology and Biotechnology, 95, 623–633.
Khandare, S. D., Chaudhary, D. R., & Jha, B. (2021). Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic. Biodegradation, 32, 127–143.
Khoironi, A., Anggoro, S., & Sudarno, S. (2019). Evaluation of the interaction among microalgae spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. Journal of Ecological Engineering, 20, 161–173.
Kim, H., Kim, J., Cha, H., Kang, M. J., Lee, H., Khang, T., Yun, E., Lee, D. H., Song, B., Park, S. J., Joo, J. C., & Kim, K. (2019). Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustainable Chemistry & Engineering, 7, 19396–19406.
Kiran Naik, B., Chinthala, M., Patel, S., & Ramesh, P. (2021). Performance assessment of waste heat/solar driven membrane-based simultaneous desalination and liquid desiccant regeneration system using a thermal model and KNN machine learning tool. Desalination, 505, Article 114980.
Knott, B. C., Erickson, E., Allen, M. D., Gado, J. E., Graham, R., Kearns, F. L., Pardo, I., Topuzlu, E., Anderson, J. J., Austin, H. P., Dominick, G., Johnson, C. W., Rorrer, N. A., Szostkiewicz, C. J., Copie, V., Payne, C. M., Woodcock, H. L., Donohoe, B. S., Beckham, G. T., & McGeehan, J. E. (2020). Characterization and engineering of a two-enzyme system for plastics depolymerization. Proceedings of the National Academy of Sciences of the United States of America, 117, 25476–25485.
Lee, A., & Liew, M. S. (2021). Tertiary recycling of plastics waste: An analysis of feedstock, chemical and biological degradation methods. Journal of Material Cycles and Waste Management, 23, 32–43.
Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., Zhou, X., & Yuan, Y. (2018). Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 4, 888–893.
Mihreteab, M., Stubblefield, B. A., & Gilbert, E. S. (2019). Microbial bioconversion of thermally depolymerized polypropylene by Yarrowia lipolytica for fatty acid production. Applied Microbiology and Biotechnology, 103, 7729–7740.
Mistry, C., Surya, D. V., Potnuri, R., Basak, T., Kumar, P. S., Rao, C. S., Gautam, R., Sridhar, P., Choksi, H., & Remya, N. (2023). Effective electronic waste valorization via microwave-assisted pyrolysis: Investigation of graphite susceptor and feedstock quantity on pyrolysis using experimental and polynomial regression techniques. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-30661-y
Mohanan, N., Montazer, Z., Sharma, P. K., & Levin, D. B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11, Article 580709.
Montazer, Z., Habibi-Najafi, M. B., Mohebbi, M., & Oromiehei, A. (2018). Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26, 3613–3625.
Moog, D., Schmitt, J., Senger, J., Zarzycki, J., Rexer, K. H., Linne, U., Erb, T., & Maier, U. G. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18, 171.
Nikodinovic-Runic, J., Casey, E., Duane, G. F., Mitic, D., Hume, A. R., Kenny, S. T., & O'Connor, K. E. (2011). Process analysis of the conversion of styrene to biomass and medium chain length polyhydroxyalkanoate in a two-phase bioreactor. Biotechnology and Bioengineering, 108, 2447–2455.
Onda, D. F., Gomez, N. C., Purganan, D. J., Tolentino, M. P., Bitalac, J. M., Calpito, J. V., Perez, J. N., & Viernes, A. C. (2020). Marine microbes and plastic debris: Research status and opportunities in the Philippines. Philippine Journal of Sci-ence, 149, 71–82.
Potnuri, R., Rao, C. S., Surya, D. V., Kumar, A., & Basak, T. (2023a). Utilizing support vector regression modeling to predict pyro product yields from microwave-assisted catalytic co-pyrolysis of biomass and waste plastics. Energy Conversion and Management, 292, Article 117387.
Potnuri, R., Rao, C. S., Surya, D. V., Sridevi, V., & Kulkarni, A. (2023b). Two-step synthesis of biochar using torrefaction and microwave-assisted pyrolysis: Understanding the effects of torrefaction temperature and catalyst loading. Journal of Analytical and Applied Pyrolysis, 175, Article 106191.
Potnuri, R., Suriapparao, D. V., Rao, C. S., & Kumar, T. H. (2022c). Understanding the role of modeling and simulation in pyrolysis of biomass and waste plastics: A review. Bioresource Technology Reports, 20, Article 101221.
Potnuri, R., Suriapparao, D. V., Sankar Rao, C., Sridevi, V., & Kumar, A. (2022a). Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach. Renewable Energy, 197, 798–809.
Potnuri, R., Suriapparao, D. V., Sankar Rao, C., Sridevi, V., Kumar, A., & Shah, M. (2022b). The effect of torrefaction temperature and catalyst loading in Microwave-Assisted in-situ catalytic Co-Pyrolysis of torrefied biomass and plastic wastes. Bioresource Technology, 364, Article 128099.
Potnuri, R., Surya, D. V., Rao, C. S., Yadav, A., Sridevi, V., & Remya, N. (2023c). A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass. Journal of Analytical and Applied Pyrolysis, 173, Article 106094.
Ren, W., Oeser, T., Schmidt, J., René, M., Barth, M., Then, J., & Zimmermann, W. (2016). Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnology and Bioengineering, 113, 1658–1665.
Ren, W., & Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microbial Biotechnology, 10, 1308–1322.
Ribitsch, D., Hromic, A., Zitzenbacher, S., Zartl, B., Gamerith, C., Pellis, A., Jungbauer, A., Lyskowski, A., Steinkellner, G., Gruber, K., Tscheliessnig, R., Herrero Acero, E., & Guebitz, G. M. (2017). Small cause, large effect: Structural characterization of cutinases from Thermobifida cellulosilytica. Biotechnology and Bioengineering, 114, 2481–2488.
Sadler, J. C., & Wallace, S. (2021). Microbial synthesis of vanillin from waste poly(-ethylene terephthalate). Green Chemistry, 23, 4665–4672.
Sagong, H. Y., Son, H. F., Seo, H., Hong, H., Lee, D., & Kim, K. J. (2021). Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis. Journal of Hazardous Materials, 416, Article 126075.
Samak, N. A., Jia, Y., Sharshar, M. M., Mu, T., Yang, M., Peh, S., & Xing, J. (2020). Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environment International, 145, Article 106144.
Sangiorgio, P., Verardi, A., Dimatteo, S., Spagnoletta, A., Moliterni, S., & Errico, S. (2021). Tenebrio molitorin the circular economy: A novel approach for plastic valorisation and PHA biological recovery. Environmental Science and Pollution Research, 28, 52689–52701.
Sanluis-Verdes, A., Colomer Vidal, P., Rodriguez-Ventura, F., Bello Villarino, M., Spinola-Amilibia, M., Ruiz-Lopez, E., Illanes Vicioso, R., Castroviejo, P., Aiese Cigliano, R., Montoya, M., Falabella, P., Pesquera, C., Gonzalez-Legarreta, L., Arias-Palomo, E., Sola, M., Torroba, T., Arias, C., & Bertocchini, F. (2022). Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nature Communications, 13, 5568.
Sanniyasi, E., Gopal, R. K., Gunasekar, D. K., & Raj, P. P. (2021). Biodegradation of low-density polyethylene (LDPE) sheet by microalga, Uronema africanum Borge. Scientific Reports, 11, Article 17233.
Sarmah, P., & Rout, J. (2018). Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environmental Science and Pollution Research, 25, 33508–33520.
Sheik, S., Chandrashekar, K. R., Swaroop, K., & Somashekarappa, H. M. (2015). Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation, 105, 21–29.
Shirke, A. N., White, C., Englaender, J. A., Zwarycz, A., Butterfoss, G. L., Linhardt, R. J., & Gross, R. A. (2018). Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: Mechanism and effect on PET hydrolysis. Biochemistry, 57, 1190–1200.
Silva, C., Da, S., Silva, N., Matama, T., Araujo, R., Martins, M., Chen, S., Chen, J., Wu, J., Casal, M., & Cavaco-Paulo, A. (2011). Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnology Journal, 6, 1230–1239.
Skariyachan, S., Patil, A. A., Shankar, A., Manjunath, M., Bachappanavar, N., & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, 149, 52–68.
Son, H., Cho, I. J., Joo, S., Seo, H., Sagong, H. Y., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2019). Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 9, 3519–3526.
Spina, F., Tummino, M. L., Poli, A., Prigione, V., Ilieva, V., Cocconcelli, P., Puglisi, E., Bracco, P., Zanetti, M., & Varese, G. C. (2021). Low density polyethylene degradation by filamentous fungi. Environmental Pollution, 274, Article 116548.
Sridevi, V., Suriapparao, D. V., Tukarambai, M., Terapalli, A., Ramesh, P., Sankar Rao, C., Gautam, R., Moorthy, J. V., & Suresh Kumar, C. (2022). Understanding of synergy in non-isothermal microwave-assisted in-situ catalytic co-pyrolysis of rice husk and polystyrene waste mixtures. Bioresource Technology, 360, Article 127589.
Suriapparao, D. V., Hemanth Kumar, T., Reddy, B. R., Yerrayya, A., Srinivas, B. A., Sivakumar, P., … Desinghu, J. (2022a). Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes. Renewable Energy, 181, 990–999.
Suriapparao, D. V., Sridevi, V., Ramesh, P., Sankar Rao, C., Tukarambai, M., Kamireddi, D., … Pritam, K. (2022b). Synthesis of sustainable chemicals from waste tea powder and Polystyrene via Microwave-Assisted in-situ catalytic Co-Pyrolysis: Analysis of pyrolysis using experimental and modeling approaches. Bioresource Technology, 362, Article 127813.
Tan, L. T., Hiraishi, T., Sudesh, K., & Maeda, M. (2013). Directed evolution of poly[(R)-3-hydroxybutyrate]depolymerase using cell surface display system: Functional importance of asparagine at position 285. Applied Microbiology and Biotechnology, 97, 4859–4871.
Then, J., Wei, R., Oeser, T., Gerdts, A., Schmidt, J., Barth, M., & Zimmermann, W. (2016). A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate. FEBS Open Bio, 6, 425–432.
Thumarat, U., Kawabata, T., Nakajima, M., Nakajima, H., Sugiyama, A., Yazaki, K., Tada, T., Waku, T., Tanaka, N., & Kawai, F. (2015). Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119. Journal of Bioscience and Bioengineering, 120, 491–497.
Tiso, T., Winter, B., Wei, R., Hee, J., de Witt, J., Wierckx, N., Quicker, P., Bornscheuer, U. T., Bardow, A., Nogales, J., & Blank, L. M. (2022). The metabolic potential of plastics as biotechnological carbon sourceseReview and targets for the future. Metabolic Engineering, 71, 77–98.
Tiwari, M. K., Singh, R., Singh, R. K., Kim, I. W., & Lee, J. K. (2012). Computational approaches for rational design of proteins with novel functionalities. Computational and Structural Biotechnology Journal, 2, Article e201204002.
Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M. L., Texier, H., Gavalda, S., Cot, M., Guemard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., Andre, I., Duquesne, S., & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580, 216–219.
Urbanek, A. K., Kosiorowska, K. E., & Mirończuk, A. M. (2021). Current knowledge on polyethylene terephthalate degradation by genetically modified microorganisms. Frontiers in Bioengineering and Biotechnology, 9, Article 771133.
Vimal Kumar, R., Kanna, G. R., & Elumalai, S. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation and Biodegradation, 8, 381.
Wang, C., Zhao, L., Lim, M. K., Chen, W. Q., & Sutherland, J. W. (2020). Structure of the global plastic waste trade network and the impact of China's import Ban. Resources, Conservation and Recycling, 153, Article 104591.
Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers, 5(1), 1–18.
Weber, J., Petrović, D., Strodel, B., Smits, S. H. J., Kolkenbrock, S., Leggewie, C., & Jaeger, K. E. (2019). Interaction of carbohydrate-binding modules with poly(-ethylene terephthalate). Applied Microbiology and Biotechnology, 103, 4801–4812.
Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. Journal of Applied Microbiology, 123, 582–593.
Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q., & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704, Article 135931.
Zhong-Johnson, E. Z. L., Voigt, C. A., & Sinskey, A. J. (2021). An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films. Scientific Reports, 11, 928.
Zhu, B., Wang, D., & Wei, N. (2022). Enzyme discovery and engineering for sustainable plastic recycling. Trends in Biotechnology, 40, 22–37.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).