AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent progress and hurdles in cathode recycling for Li-ion batteries

Ponraj JenisaTing Zhanga,b,dBrindha RamasubramanianaSen Linb,dPrasada Rao Rayavarapua( )Jianguo Yub,cSeeram Ramakrishnaa( )
Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119260, Singapore
National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
Engineering Research Center of Salt Lake Resources Process Engineering, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
Show Author Information

Abstract

This review focuses on standard Li recycling approaches for LiFePO4 (LFP) and nickel−cobalt−manganese (NCM) cathodes. The study discusses about advances in leaching agents, including organic acid, alkaline solutions, natural organic acid, and electrochemical treatments. Emphasis is placed on the significance of selective Li leaching strategies to optimize the recycling of waste batteries. The review also outlines potential future research directions for enhancing selective recycling, providing valuable insights into the recycling of LFP and NCM batteries. Simultaneously, the article addresses the challenges associated with the transition from conventional lithium-ion batteries to all-solid-state batteries (ASSBs) in the pursuit of sustainable energy storage technologies. It highlights key points, including the challenges in developing ASSBs, the role of employing various material combinations and its preparation techniques, adopting scalable solution-based processes for commercialization, and strategies for sustainable ASSB recycling. The proposition of a fully recyclable ASSB model underscores the commitment to lower recycling costs using safer and simpler methods, positioning nanotechnology as an enabling tool for achieving advancements in materials and cell-level performance.

References

 

Alfaro-Algaba, M., & Ramirez, F. J. (2020). Techno-economic and environmental disassembly planning of lithium-ion electric vehicle battery packs for remanufacturing. Resources, Conservation and Recycling, 154, Article 104461.

 
Audi Media Center. (2019). New drive version for the electric SUV: The Audi e-tron 50 quattro. Available at https://www.audi-mediacenter.com/en/new-driveversion-for-the-electric-suv-the-audi-e-tron-50-quattro-11928.
 

Azhari, L., Bong, S., Ma, X., & Wang, Y. (2020). Recycling for all solid-state lithium-ion batteries. Matter, 3, 1845-1861.

 

Bauer, C., Hofer, J., Althaus, H. J., Del Duce, A., & Simons, A. (2015). The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Applied Energy, 157, 871-883.

 

Bhuvaneswari, D., & Kalaiselvi, N. (2014). In situ carbon coated LiFePO4/C microrods with improved lithium intercalation behavior. Physical Chemistry Chemical Physics, 16, 1469-1478.

 

Boyden, A., Soo, V. K., & Doolan, M. (2016). The environmental impacts of recycling portable lithium-ion batteries. Procedia CIRP, 48, 188-193.

 

Brindha, R., Mohanraj, R., Manojkumar, P., Selvam, M., & Sakthipandi, K. (2020). Hybrid electrochemical behaviour of La1-xCaxMnO3 nano perovskites and recycled polar interspersed graphene for metal-air battery system. Journal of the Electrochemical Society, 167, Article 120539.

 

Cao, D., Sun, X., Li, Q., Natan, A., Xiang, P., & Zhu, H. (2020). Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter, 3, 57-94.

 

Chang, D., Yang, S., Shi, P., Jie, Y., Hu, F., Fang, G., & Chen, Y. (2022a). Selective recovery of lithium and efficient leaching of transition metals from spent LiNixCoyMnzO2 batteries based on a synergistic roasting process. Chemical Engineering Journal, 449, Article 137752.

 

Chen, W. L., Chen, C., Xiao, H., Chen, C. W., & Sun, D. (2023). Recovery of Li2CO3 from spent LiFePO4 by using a novel impurity elimination process. Molecules, 28, 3902.

 

Chang, L., Wei, A., Luo, S., Cao, S., Bi, X., Yang, W., … Liu, J. (2022b). Lithium-ion battery: A comprehensive research progress of high nickel ternary cathode material. International Journal of Energy Research, 46, 23145-23172.

 

Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3, 2622-2646.

 

Chen, S., Xie, D., Liu, G., Mwizerwa, J. P., Zhang, Q., Zhao, Y., Xu, X., & Yao, X. (2018). Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Materials, 14, 58-74.

 

Ciez, R. E., & Whitacre, J. F. (2019). Examining different recycling processes for lithium-ion batteries. Nature Sustainability, 2, 148-156.

 

Cooper, R., & Kaplan, R. S. (1988). Measure costs right: Make the right decision. The CPA Journal, 60(2), 38.

 

Croce, F., Appetecchi, G. B., Persi, L., & Scrosati, B. (1998). Nanocomposite polymer electrolytes for lithium batteries. Nature, 394, 456-458.

 

Dahn, J. (1990). Structure and electrochemistry of LiyNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics, 44, 87-97.

 

Dai, Y., Xu, Z., Hua, D., Gu, H., & Wang, N. (2020). Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: An acid-free, efficient, and selective process. Journal of Hazardous Materials, 396, Article 122707.

 

Do, M. P., Jegan Roy, J., Cao, B., & Srinivasan, M. (2022). Green closed-loop cathode regeneration from spent NMC-based lithium-ion batteries through bioleaching. ACS Sustainable Chemistry & Engineering, 10, 2634-2644.

 
Elementenergy. (2012). Cost and performance of EV batteries-dfinal report for the committee on climate change. Available at https://www.yumpu.com/en/document/view/3901506/cost-and-performance-of-ev-batteries-final-reportelement-energy.
 

Zhang, R., Zheng, Y., Yao, Z., Vanaphuti, P., Ma, X., Bong, S., Chen, M., Liu, Y., Cheng, F., Yang, Z., et al. (2020). Systematic study of Al impurity for NCM622 cathode materials. ACS Sustainable Chemistry & Engineering, 8, 9875-9884.

 

Fan, E., Li, L., Lin, J., Wu, J., Yang, J., Wu, F., & Chen, R. (2019). Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 7, 16144-16150.

 

Fang, S., Bresser, D., & Passerini, S. (2020). Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Advanced Energy Materials, 10, Article 1902485.

 

Fang, J., Ding, Z., Ling, Y., Li, J., Zhuge, X., Luo, Z., Ren, Y., & Luo, K. (2022). Green recycling and regeneration of LiNi0.5Co0.2Mn0.3O2 from spent Lithium-ion batteries assisted by sodium sulfate electrolysis. Chemical Engineering Journal, 440, Article 135880.

 

Fichtner, M. (2022). Recent research and progress in batteries for electric vehicles. Batteries & Supercaps, 5, Article 2100224.

 

Gaines, L. (2014). The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustainable Materials and Technologies, 1–2, 2-7.

 

Gaines, L. (2018). Lithium-ion battery recycling processes: Research towards a sustainable course. Sustainable Materials and Technologies, 17, Article e00068.

 

Gao, F., & Tang, Z. (2008). Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochimica Acta, 53, 5071-5075.

 

Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., & Rutz, M. (2012). Development of a recycling process for Li-ion batteries. Journal of Power Sources, 207, 173-182.

 

Gratz, E., Sa, Q., Apelian, D., & Wang, Y. (2014). A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 262, 255-262.

 

Guo, X., Xiang, D., Duan, G., & Mou, P. (2010). A review of mechanochemistry applications in waste management. Waste Management, 30, 4-10.

 

Hagelüken, C. (2006). Recycling of electronic scrap at Umicore precious metals refining. Acta Metallurgica Slovaca, 12, 111-120.

 

Haldi, J., & Whitcomb, D. (1967). Economies of scale in industrial plants. Journal of Political Economy, 75, 373-385.

 

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., … Abbott, A. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), 75-86.

 
Harrison, R., & Hester, R. (2017). Environmental impacts of road vehicles: Past. Present and future. Croydon, UK: The Royal Society of Chemistry.
 

He, X., Wen, Y., Wang, X., Cui, Y., Li, L., & Ma, H. (2023). Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent. Waste Management, 157, 8-16.

 

He, K., Zhang, Z. Y., & Zhang, F. S. (2020). A green process for phosphorus recovery from spent LiFePO4 batteries by transformation of delithiated LiFePO4 crystal into NaFeS2. Journal of Hazardous Materials, 395, Article 122614.

 

Horváth, P., & Mayer, R. (1989). Prozeßkostenrechnung. Der neue Weg zu mehr Kostentransparenz und wirkungsvolleren Unternehmensstrategien. Controlling, 1(4), 214-219. (in Germany)

 

Hu, J., Zhang, J., Li, H., Chen, Y., & Wang, C. (2017). A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources, 351, 192-199.

 

Huang, Y., Han, G., Liu, J., Chai, W., Wang, W., Yang, S., & Su, S. (2016). A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process. Journal of Power Sources, 325, 555-564.

 

Huang, Z., Liu, X., Zheng, Y., Wang, Q., Liu, J., & Xu, S. (2023). Boosting efficient and low-energy solid phase regeneration for single crystal LiNi0.6Co0.2Mn0.2O2 via highly selective leaching and its industrial application. Chemical Engineering Journal, 451, Article 139039.

 

Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274-286.

 

Huang, C., Xia, X., Chi, Z., Yang, Z., Huang, H., Chen, Z., Tang, W., Wu, G., Chen, H., & Zhang, W. (2022). Preparation of single-crystal ternary cathode materials via recycling spent cathodes for high performance lithium-ion batteries. Nanoscale, 14, 9724-9735.

 

James, S. L., Adams, C. J., Bolm, C., Braga, D., Collier, P., Friščić T., … Krebs, A. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413-447.

 

Ji, G., Wang, J., Liang, Z., et al. (2023). Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nature Communications, 14, 584.

 

Jiang, Y., Chen, X., Yan, S., Li, S., & Zhou, T. (2021). Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through Ferro-chemistry. Chemical Engineering Journal, 426, Article 131637.

 

Jiang, Y., Chen, X., Yan, S., Ou, Y., & Zhou, T. (2022). Mechanochemistry-induced recycling of spent lithium-ion batteries for synergistic treatment of mixed cathode powders. Green Chemistry, 24, 5987-5997.

 

Jia, K., Wang, J., Zhuang, Z., Piao, Z., Zhang, M., Liang, Z.,, … Yao, W., et al. (2023b). Topotactic transformation of surface structure enabling direct regeneration of spent lithium-ion battery cathodes. Journal of the American Chemical Society, 145, 7288-7300.

 

Jia, K., Ma, J., Wang, J., Liang, Z., Ji, G., Piao, Z., Gao, R., … Cheng, H. M. (2023a). Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe. Advanced Materials, 35(5), Article 2208034.

 

Jiang, G., Zhang, Y., Meng, Q., Zhang, Y., Dong, P., Zhang, M., & Yang, X. (2020). Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chemistry & Engineering, 8, 18138-18147.

 

Jin, H., Zhang, J., Wang, D., Jing, Q., Chen, Y., & Wang, C. (2022a). Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation–water leaching at room temperature. Green Chemistry, 24, 152-162.

 

Jin, Y., Zhang, T., & Zhang, M. (2022b). Advances in intelligent regeneration of cathode materials for sustainable lithium-ion batteries. Advanced Energy Materials, 12, Article 2201526.

 

Jung, J. C. Y., Sui, P. C., & Zhang, J. (2021). A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. Journal of Energy Storage, 35, Article 102217.

 

Kampker, A., Heimes, H. H., Offermanns, C., Frieges, M. H., Graaf, M., Soldan Cattani, N., & Späth, B. (2023). Cost-benefit analysis of downstream applications for retired electric vehicle batteries. World Electric Vehicle Journal, 14, 110.

 
Kaplan, R. S., & Anderson, S. R. (2003). Time-driven activity-based costing. Harvard business press.
 

Kaupp, G. (2009). Mechanochemistry: The varied applications of mechanical bond-breaking. CrystEngComm, 11, 388-403.

 

Kim, S. W., Seo, D. H., Ma, X., Ceder, G., & Kang, K. (2012). Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2, 710-721.

 

Kim, K. M., Shin, D. O., & Lee, Y. G. (2015). Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+Al Ti2-(PO4)3 solid electrolytes. Electrochimica Acta, 176, 1364-1373.

 

Kong, L., Li, Z., Zhu, W., Ratwani, C. R., Fernando, N., Karunarathne, S., Abdelkader, A. M., Kamali, A. R., & Shi, Z. (2023). Sustainable regeneration of high-performance LiCoO2 from completely failed lithium-ion batteries. Journal of Colloid and Interface Science, 640, 1080-1088.

 

Kotobuki, M., Koishi, M., & Kato, Y. (2013). Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method. Ionics, 19, 1945-1948.

 

Kumar, K. K., Brindha, R., Nandhini, M., Selvam, M., Saminathan, K., & Sakthipandi, K. (2019). Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system. Ionics, 25, 1699-1706.

 

Kumar, J., Shen, X., Li, B., Liu, H., & Zhao, J. (2020). Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Management, 113, 32-40.

 

Lee, Y. G., Fujiki, S., Jung, C., Suzuki, N., Yashiro, N., Omoda, R., … Ku, J. H. (2020). High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 5(4), 299-308.

 

Lepage, D., Michot, C., Liang, G., Gauthier, M., & Schougaard, S. B. (2011). A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angewandte Chemie International Edition, 50, 6884-6887.

 

Li, J., Wang, Y., Wang, L., Liu, B., & Zhou, H. (2019a). A facile recycling and regeneration process for spent LiFePO4 batteries. Journal of Materials Scien Materials in Electronics, 30, 14580-14588.

 

Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F., & Chen, R. (2018a). Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management, 71, 362-371.

 

Li, L., Bian, Y., Zhang, X., Yao, Y., Xue, Q., Fan, E., Wu, F., & Chen, R. (2019b). A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Management, 85, 437-444.

 

Li, M., Yang, J., Liang, S., Hou, H., Hu, J., Liu, B., & Kumar, R. V. (2019c). Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products. Journal of Power Sources, 436, Article 226853.

 

Li, X., Dogan, F., Lu, Y., Antunes, C., Shi, Y., Burrell, A., & Ban, C. (2020b). Fast determination of lithium content in spent cathodes for direct battery recycling. Advanced Sustainable Systems, 4, Article 2000073.

 

Li, X., Liu, S., Yang, J., He, Z., Zheng, J., & Li, Y. (2023). Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Materials, 55, 606-630.

 

Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018b). The recycling of spent lithium-ion batteries: A review of current processes and technologies. Electrochemical Energy Reviews, 1, 461-482.

 

Li, H., Xing, S., Liu, Y., Li, F., Guo, H., & Kuang, G. (2017). Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustainable Chemistry & Engineering, 5, 8017-8024.

 

Li, M., Lu, J., Chen, Z., & Amine, K. (2018c). 30 years of lithium-ion batteries. Advanced Materials, 30, Article 1800561.

 

Li, H. Y., Ye, H., Sun, M. C., & Chen, W. J. (2020a). Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method. Journal of Central South University, 27, 3239-3248.

 

Li, D., Zhang, B., Ye, L., Xiao, Z., Ming, L., & Ou, X. (2022). Regeneration of high-performance Li1.2Mn0.54Ni0.13Co0.13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching. Journal of Cleaner Production, 349, Article 131373.

 

Li, Z., He, L., Zhu, Y., & Yang, C. (2020c). A green and cost-effective method for production of LiOH from spent LiFePO4. ACS Sustainable Chemistry & Engineering, 8, 15915-15926.

 

Lima, M. C. C., Pontes, L. P., Vasconcelos, A. S. M., de Araujo Silva, W. Jr, & Wu, K. (2022). Economic aspects for recycling of used lithium-ion batteries from electric vehicles. Energies, 15, 2203.

 

Liu, J., Zhang, J. G., Yang, Z., Lemmon, J. P., Imhoff, C., Graff, G. L., … Xia, G. (2013). Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Advanced Functional Materials, 23(8), 929-946.

 

Liu, W., & Tobias Placke (2022). Overview of batteries and battery management for electric vehicles. Energy Reports, 8, 4058–4084.

 

Liu, W., Zheng, Z., Zhang, Y., Zhao, X., Fu, Z., Ye, J., … Hu, C. (2023a). Regeneration of LiNixCoyMnzO2 cathode materials from spent lithium-ion batteries: A review. Journal of Alloys and Compounds, 963, Article 171130.

 

Liu, Y., Jiang, W., Ling, M., Fan, X., Wang, L., & Liang, C. (2023b). Revealing lithium configuration in aged layered oxides for effective regeneration. ACS Applied Materials & Interfaces, 15, 9465-9474.

 

Liu, K., Liu, L., Tan, Q., & Li, J. (2021). Selective extraction of lithium from a spent lithium iron phosphate battery by mechanochemical solid-phase oxidation. Green Chemistry, 23, 1344-1352.

 

Liu, K., Tan, Q., Liu, L., & Li, J. (2019). Acid-free and selective extraction of lithium from spent lithium iron phosphate batteries via a mechanochemically induced isomorphic substitution. Environmental Science & Technology, 53, 9781-9788.

 

Long, L., Wang, S., Xiao, M., & Meng, Y. (2016). Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 4, 10038-10069.

 

Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., & Sun, Z. (2018). A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6, 1504-1521.

 

Ma, J., Wang, J., Jia, K., Liang, Z., Ji, G., Zhuang, Z., … Cheng, H. (2022). Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes. Journal of the American Chemical Society, 144(44), 20306-20314

 

Mahandra, H., & Ghahreman, A. (2021). A sustainable process for selective recovery of lithium as lithium phosphate from spent LiFePO4 batteries. Resources, Conservation and Recycling, 175, Article 105883.

 
Matz, A. (1964). Standardkosten d I Ermittlung der Standardkosten und Analyse der Abweichungen. In Planung und Kontrolle von Kosten und Gewinn. Wiesbaden: Gabler Verlag (in Germany).
 
Mayer, R. (1998). Prozesskostenrechnunge-State of the Art. Prozesskostenmanagement: Methodik und Anwendungsfelder (Vol. 2, p. 54) (in Germany).
 

Meng, X., Cao, H., Hao, J., Ning, P., Xu, G., & Sun, Z. (2018). Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag. ACS Sustainable Chemistry & Engineering, 6, 5797-5805.

 

Meng, X., Hao, J., Cao, H., Lin, X., Ning, P., Zheng, X., Chang, J., Zhang, X., Wang, B., & Sun, Z. (2019). Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering. Waste Management, 84, 54-63.

 
MINING.COM. (2024). Cobalt prices and cobalt price charts. Available at http://www.infomine.com/investment/metal-prices/cobalt/.
 

Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: Present and future. Materials Today, 18, 252-264.

 

Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electricvehicles. Nature Climate Change, 5, 329-332.

 

Ogumi, Z., Kostecki, R., Guyomard, D., & Inaba, M. (2016). Lithium-ion batteries—the 25th anniversary of commercialization. Interface Magazine, 25, 65.

 

Ohzuku, T., & Makimura, Y. (2001). Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 30, 642-643.

 

Ohzuku, T., Ueda, A., Nagayama, M., Iwakoshi, Y., & Komori, H. (1993). Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells. Electrochimica Acta, 38, 1159-1167.

 

Ou, Z., Li, J., & Wang, Z. (2015). Application of mechanochemistry to metal recovery from second-hand resources: A technical overview. Environmental Sciences: Processes & Impacts, 17, 1522-1530.

 

Palaniyandy, N., Rambau, K., Musyoka, N., & Ren, J. (2020). A facile segregation process and restoration of LiMn2O4Cathode material from spent lithium-ion batteries. Journal of the Electrochemical Society, 167, Article 090510.

 

Park, O. K., Cho, Y., Lee, S., Yoo, H. C., Song, H. K., & Cho, J. (2011). Who will drive electric vehicles, olivine or spinel? Energy & Environmental Science, 4, 1621.

 

Parsa, N., Moheb, A., Mehrabani-Zeinabad, A., & Ali Masigol, M. (2015). Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process. Chemical Engineering Research and Design, 98, 81-88.

 

Pehlivan, İ. B., Marsal, R., Niklasson, G. A., Granqvist, C. G., & Georén, P. (2010). PEI–LiTFSI electrolytes for electrochromic devices: Characterization by differential scanning calorimetry and viscosity measurements. Solar Energy Materials and Solar Cells, 94, 2399-2404.

 

Peng, C., Kamiike, Y., Liang, Y., Kuroda, K., & Okido, M. (2019). Thin-film NASICON-type Li1+x Al x Ti2–x (PO4)3 solid electrolyte directly fabricated on a graphite substrate with a hydrothermal method based on different Al sources. ACS Sustainable Chemistry & Engineering, 7, 10751-10762.

 

Perea, A., Dontigny, M., & Zaghib, K. (2017). Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte. Journal of Power Sources, 359, 182-185.

 

Pinna, E. G., Ruiz, M. C., Ojeda, M. W., & Rodriguez, M. H. (2017). Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy, 167, 66-71.

 

Qin, Z., Wen, Z., Xu, Y., Zheng, Z., Bai, M., Zhang, N., Jia, C., Wu, H. B., & Chen, G. (2022). A ternary molten salt approach for direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode. Small, 18, Article 2106719.

 

Ramasubramanian, B., Rao, R. P., Chellappan, V., & Ramakrishna, S. (2022a). Towards sustainable fuel cells and batteries with an AI perspective. Sustainability, 14, Article 16001.

 

Ramasubramanian, B., Reddy, M. V., Zaghib, K., Armand, M., & Ramakrishna, S. (2021). Growth mechanism of micro/nano metal dendrites and cumulative strategies for countering its impacts in metal ion batteries: A review. Nanomaterials, 11, 2476.

 

Ramasubramanian, B., Reddy, V. S., Zhen, Y., Ramakrishna, S., & Chellappan, V. (2023). Metal organic framework derived zirconia–carbon nanoporous mat for integrated strain sensor powered by solid-state supercapacitor. Advanced Fiber Materials, 5, 1404-1416.

 

Ramasubramanian, B., Sundarrajan, S., Chellappan, V., Reddy, M. V., Ramakrishna, S., Zaghib, K. (2022b). Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: A mini review. Batteries, 8, 133.

 

Ramasubramanian, B., Sundarrajan, S., Rao, R. P., Reddy, M. V., Chellappan, V., & Ramakrishna, S. (2022c). Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy & Environmental Science, 15, 4928-4981.

 

Ren, Y., Chen, K., Chen, R., Liu, T., Zhang, Y., & Nan, C. W. (2015). Oxide electrolytes for lithium batteries. Journal of the American Ceramic Society, 98, 3603-3623.

 

Rojaee, R., & Shahbazian-Yassar, R. (2020). Two-dimensional materials to address the lithium battery challenges. ACS Nano, 14, 2628-2658.

 

Šepelák, V., Düvel, A., Wilkening, M., Becker, K. D., & Heitjans, P. (2013). Mechanochemical reactions and syntheses of oxides. Chemical Society Reviews, 42, 7507.

 

Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195, 2419-2430.

 

Shao, C., Liu, H., Yu, Z., Zheng, Z., Sun, N., & Diao, C. (2016). Structure and ionic conductivity of cubic Li7La3Zr2O12 solid electrolyte prepared by chemical co-precipitation method. Solid State Ionics, 287, 13-16.

 

Shi, Y., Chen, G., & Chen, Z. (2018a). Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles. Green Chemistry, 20, 851-862.

 

Shi, Y., Chen, G., Liu, F., Yue, X., & Chen, Z. (2018b). Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Letters, 3, 1683-1692.

 

Shin, H. C., Cho, W. I., & Jang, H. (2006). Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. Journal of Power Sources, 159, 1383-1388.

 

Sommerville, R., Zhu, P., Ali Rajaeifar, M., Heidrich, O., Goodship, V., & Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling, 165, Article 105219.

 

Takacs, L. (2013). The historical development of mechanochemistry. Chemical Society Reviews, 42, 7649.

 

Takahashi, M., Ohtsuka, H., Akuto, K., & Sakurai, Y. (2005). Confirmation of long-term cyclability and high thermal stability of LiFePO4 in prismatic lithium-ion cells. Journal of the Electrochemical Society, 152, Article A899.

 

Tan, D. H. S., Banerjee, A., Chen, Z., & Meng, Y. S. (2020a). From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature Nanotechnology, 15, 170-180.

 

Tan, P., Zheng, Q., Zou, Y., Shi, B., Jiang, D., Qu, X., … Wang, Z. L. (2019). A battery-like self-charge universal module for motional energy harvest. Advanced Energy Materials, 9(36), 1901875.

 

Tan, Q., & Li, J. (2015). Recycling metals from wastes: A novel application of mechanochemistry. Environmental Science & Technology, 49, 5849-5861.

 

Tan, D. H. S., Xu, P., Yang, H., Kim, M. C., Nguyen, H., Wu, E. A., … Chen, Z. (2020b). Sustainable design of fully recyclable all solid-state batteries. MRS Energy & Sustainability, 7, 23.

 
The London Metal Exchange. (2024). EV metals. Available at https://www.lme.com/en/Metals/EV.
 

Tolganbek, N., Yerkinbekova, Y., Kalybekkyzy, S., Bakenov, Z., & Mentbayeva, A. (2021). Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. Journal of Alloys and Compounds, 882, Article 160774.

 

van Vliet, O., Brouwer, A. S., Kuramochi, T., van den Broek, M., & Faaij, A. (2011). Energy use, cost and CO2 emissions of electric cars. Journal of Power Sources, 196, 2298-2310.

 

Vanaphuti, P., Chen, J., Cao, J., Bigham, K., Chen, B., Yang, L., Chen, H., & Wang, Y. (2019). Enhanced electrochemical performance of the lithium-manganese-rich cathode for Li-ion batteries with Na and F codoping. ACS Applied Materials & Interfaces, 11, 37842-37849.

 

Velázquez-Martínez, V., Santasalo-Aarnio, & R., Serna-Guerrero. (2019). A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries, 5, 68.

 

Wang, J., Yue, X., Wang, P., Yu, T., Du, X., Hao, X., … Guan, G. (2022a). Electrochemical technologies for lithium recovery from liquid resources: A review. Renewable and Sustainable Energy Reviews, 154, Article 111813.

 

Wang, C., Wang, S., Yan, F., Zhang, Z., Shen, X., & Zhang, Z. (2020). Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Management, 114, 253-262.

 

Wang, M., Liu, K., Yu, J., Zhang, C. C., Zhang, Z., & Tan, Q. (2022b). Recycling spent lithium-ion batteries using a mechanochemical approach. Circular Economy, 1, Article 100012.

 

Wang, Y., Xu, Z., Zhang, X., Yang, E., & Tu, Y. (2022c). A green process to recover valuable metals from the spent ternary lithium-ion batteries. Separation and Purification Technology, 299, Article 121782.

 

Wu, J., Zheng, M., Liu, T., Wang, Y., Liu, Y., Nai, J., Zhang, L., Zhang, S., & Tao, X. (2023). Direct recovery: A sustainable recycling technology for spent lithium-ion battery. Energy Storage Materials, 54, 120-134.

 

Xiang, J., Yang, L., Yuan, L., Yuan, K., Zhang, Y., Huang, Y., Lin, J., Pan, F., & Huang, Y. (2019). Alkali-metal anodes: From lab to market. Joule, 3, 2334-2363.

 

Xiao, J., Li, J., & Xu, Z. (2017). Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy. Journal of Hazardous Materials, 338, 124-131.

 

Xiao, J., Li, J., & Xu, Z. (2020). Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environmental Science & Technology, 54, 9-25.

 

Xue, Z., He, D., & Xie, X. (2015). Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 3, 19218-19253.

 

Yang, X. G., Liu, T., & Wang, C. Y. (2021). Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nature Energy, 6, 176-185.

 

Yang, Y., Meng, X., Cao, H., Lin, X., Liu, C., Sun, Y., Zhang, Y., & Sun, Z. (2018). Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process. Green Chemistry, 20, 3121-3133.

 

Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Wu, J., & Liu, X. (2019). Review on polymer-based composite electrolytes for lithium batteries. Frontiers in Chemistry, 7, 522.

 

Yu, J., Wang, X., Zhou, M., & Wang, Q. (2019). A redox targeting-based material recycling strategy for spent lithium ion batteries. Energy & Environmental Science, 12, 2672-2677.

 

Yu, X., Yu, S., Yang, Z., Gao, H., Xu, P., Cai, G., Rose, S., Brooks, C., Liu, P., & Chen, Z. (2022). Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Materials, 51, 54-62.

 

Yuan, C., Wu, H. B., Xie, Y., & Lou, X. W. D. (2014). Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angewandte Chemie International Edition, 53, 1488-1504.

 

Yue, X. H., Zhang, C. C., Zhang, W. B., Wang, Y., & Zhang, F. S. (2021). Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium. Chemical Engineering Journal, 426, Article 131311.

 

Zhang, B., Qu, X., Chen, X., Liu, D., Zhao, Z., Xie, H., … Yin, H. (2022). A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO4 batteries. Journal of Hazardous Materials, 424, 127586.

 

Zhang, Q., Cao, D., Ma, Y., Natan, A., Aurora, P., & Zhu, H. (2019). Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Advanced Materials, 31, Article 1901131.

 

Zhen, Y., Reddy, V. S., Ramasubramanian, B., & Ramakrishna, S. (2022). Three-dimensional AgNps@Mxene@PEDOT: PSS composite hybrid foam as a piezoresistive pressure sensor with ultra-broad working range. Journal of Materials Science, 57, 21960-21979.

 

Zheng, F., Kotobuki, M., Song, S., Lai, M. O., & Lu, L. (2018a). Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 389, 198-213.

 

Zheng, X., Zhu, Z., Lin, X., Zhang, Y., He, Y., Cao, H., & Sun, Z. (2018b). A mini-review on metal recycling from spent lithium ion batteries. Engineering, 4, 361-370.

 

Zhou, H., Zhao, X., Yin, C., & Li, J. (2018a). Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Electrochimica Acta, 291, 142-150.

 

Zhou, L., Zhang, K., Hu, Z., Tao, Z>, Mai, L., … Chen, J. (2018b). Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Advanced Energy Materials, 8(6), Article 1701415.

 

Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018a). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308.

 

Zorn, M., Ionescu, C., Klohs, D., Zähl, K., Kisseler, N., Daldrup, A., … Henke, C. (2022). An approach for automated disassembly of lithium-ion battery packs and high-quality recycling using computer vision, labeling, and material characterization. Recycling, 7(4), 48.

 

Zhang, B., Wang, S., Li, Y., Sun, P., Yang, C., Wang, D., & Liu, L. (2020). Phase transition mechanism and supercritical hydrothermal synthesis of nano lithium iron phosphate. Ceramics international, 46(18), 27922-27939.

Circular Economy
Cite this article:
Jenis P, Zhang T, Ramasubramanian B, et al. Recent progress and hurdles in cathode recycling for Li-ion batteries. Circular Economy, 2024, 3(2): 100087. https://doi.org/10.1016/j.cec.2024.100087

224

Views

0

Crossref

0

Scopus

Altmetrics

Received: 17 November 2023
Revised: 03 January 2024
Accepted: 22 January 2024
Published: 29 May 2024
© 2024 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return