AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

Malachite green dye removal with aluminosilicate nanopowder from aluminum dross and silicomanganese slag

Mostafa Mahinroostaa,b( )Rozita M MoattaricAli AllahverdibPooria Ghadird,e
Department of Energy, Materials and Energy Research Center, Karaj 3177983634, Iran
Research laboratory of Inorganic Chemical Process Technologies, School of Chemical Engineering, Iran University of Science and Technology, Narmak 1684613114, Tehran, Iran
Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak 1684613114, Tehran, Iran
Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
Department of Engineering, University of Exeter, Exeter EX4 4QF, UK
Show Author Information

Abstract

Malachite green is a persistent, bioaccumulative, mutagenic, carcinogenic, and teratogenic dye that poses significant risks in water sources, making its removal from water a critical necessity. This study aims to fabricate a sorbent comprising amorphous aluminosilicate nanopowder utilizing silicomanganese slag (SMS) and secondary aluminum dross (SAD) waste materials to remediate dye-contaminated water. The silica and alumina components of the SMS and SAD were extracted as sodium silicate and sodium aluminate leachates, respectively, through an effective hydrometallurgical conversion process. An empirical formula of Al2O3·2.3SiO2 was deduced from the X-ray fluorescence analysis of the synthesized material. The X-ray diffraction (XRD) pattern indicated the amorphous nature of the synthesized aluminosilicate, with no evidence of nanocrystals or ordered clusters observed via high-resolution transmission electron microscopy (TEM). Based on TEM micrographs, the aluminosilicate particles ranged in size from 20 to 80 nm. The synthesized aluminosilicate nanopowder was utilized to treat wastewater containing malachite green dye, demonstrating a remarkable dye removal efficiency of 97% after a 15-min contact time using 30 mg of adsorbent in a 30 mL dye solution at 200 rpm. The methodology proposed in this study could facilitate the production of amorphous aluminosilicate powder as a high-value product from industrial waste. Studies on its reusability demonstrated that it could remove over 90% of the dye after three cycles of use.

References

 

Abate, G. Y., Alene, A. N., Habte, A. T., & Getahun, D. M. (2020). Adsorptive removal of malachite green dye from aqueous solution onto activated carbon of Catha edulis stem as a low cost bio-adsorbent. Environmental Systems Research, 9, 29. https://doi.org/10.1186/s40068-020-00191-4

 

Abewaa, M., Mengistu, A., Takele, T., Fito, J., & Nkambule, T. (2023). Adsorptive removal of malachite green dye from aqueous solution using Rumex abyssinicus derived activated carbon. Scientific Reports, 13, Article 14701. https://doi.org/10.1038/s41598-023-41957-x

 

Akhlaghian, F., Ghadermazi, M., & Chenarani, B. (2014). Removal of phenolic compounds by adsorption on nano structured aluminosilicates. Journal of Environmental Chemical Engineering, 2, 543–549. https://doi.org/10.1016/j.jece.2013.10.009

 

Choi, S., Kim, J., Oh, S., & Han, D. (2017). Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. Journal of Material Cycles and Waste Management, 19, 374–381. https://doi.org/10.1007/s10163-015-0431-6

 

Diwakar, J., Viswanadham, N., Saxena, S. K., Kumar, S., & Al-Muhtaseb, A. H. (2018). Liquid-phase solvent-less reactions for value addition of glycerol and phenols over nano porous aluminosilicates. Materials Today Communications, 15, 260–268. https://doi.org/10.1016/j.mtcomm.2018.03.014

 

Duan, C., Cao, Y., Hu, L., Zhang, Y., Fu, D., Ma, J., & Zhang, J. (2019). Mechanochemical synthesis of the α-AlH3/LiCl nano-composites by reaction of LiH and AlCl3: Kinetics modeling and reaction mechanism. International Journal of Hydrogen Energy, 44, 23716–23725. https://doi.org/10.1016/j.ijhydene.2019.07.092

 

Dubey, S., Mishra, R. K., Kaya, S., Rene, E. R., Giri, B. S., & Sharma, Y. C. (2024). Microalgae derived honeycomb structured mesoporous diatom biosilica for adsorption of malachite green: Process optimization and modeling. Chemosphere, 355, Article 141696. https://doi.org/10.1016/j.chemosphere.2024.141696

 

Fotukian, S. M., Barati, A., Soleymani, M., & Alizadeh, A. M. (2020). Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. Journal of Alloys and Compounds, 816, Article 152548. https://doi.org/10.1016/j.jallcom.2019.152548

 

Frías, M., de Rojas, M. I. S., & Rodríguez, C. (2009). The influence of SiMn slag on chemical resistance of blended cement pastes. Construction and Building Materials, 23, 1472–1475.

 

Frost, R. L., Frederick, P. M., & Shurvell, H. F. (1996). Raman microscopy of some kaolinite clay minerals. Canadian journal of applied spectroscopy, 41, 10–14.

 

Fu, Z., Liu, T., Kong, X., Liu, Y., Xu, J., Zhang, B., Chen, H., & Chen, Z. (2019). Synthesis and characterization of nano-layered Mg-vermiculite by hydrothermal method. Materials Letters, 238, 175–178. https://doi.org/10.1016/j.matlet.2018.11.148

 

Galarneau, A., Villemot, F., Rodriguez, J., Fajula, F., & Coasne, B. (2014). Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir, 30, 13266–13274. https://doi.org/10.1021/la5026679

 

Gebre Meskel, A., Kwikima, M. M., Meshesha, B. T., Habtu, N. G., Naik, S. V. C. S., & Vellanki, B. P. (2024). Malachite green and methylene blue dye removal using modified bagasse fly ash: Adsorption optimization studies. Environmental Challenges, 14, Article 100829. https://doi.org/10.1016/j.envc.2023.100829

 

Harkins, W. D., & Jura, G. (1944). Surfaces of solids. Ⅻ. An absolute method for the determination of the area of a finely divided crystalline solid. Journal of the American Chemical Society, 66, 1362–1366. https://doi.org/10.1021/ja01236a047

 

Hussien Hamad, M. T. M. (2023). Optimization study of the adsorption of malachite green removal by MgO nano-composite, nano-bentonite and fungal immobilization on active carbon using response surface methodology and kinetic study. Environmental Sciences Europe, 35, 26. https://doi.org/10.1186/s12302-023-00728-1

 

Jara, A. A., Goldberg, S., & Mora, M. L. (2005). Studies of the surface charge of amorphous aluminosilicates using surface complexation models. Journal of Colloid and Interface Science, 292, 160–170. https://doi.org/10.1016/j.jcis.2005.05.083

 

Kamath Miyar, H., Pai, A., & Goveas, L. C. (2021). Adsorption of malachite green by extracellular polymeric substance of Lysinibacillus sp. SS1: Kinetics and isotherms. Heliyon, 7, Article e07169. https://doi.org/10.1016/j.heliyon.2021.e07169

 

Kant Sharma, R., Gautam, P., Kumar, A., & Mandal, K. D. (2017). Synthesis of sphere-like nano-crystalline Co3O4 spinel via a simple homogeneous precipitation method. Materials Today: Proceedings, 4, 5667–5671. https://doi.org/10.1016/j.matpr.2017.06.028

 

Kim, B. S., Jeong, S. B., Jeong, M. H., & Ryu, J. W. (2011). Upgrading of manganese from waste silicomanganese slag by a mechanical separation process. Materials Transactions, 52, 1705–1708. https://doi.org/10.2320/matertrans.M2011114

 

Kumar, S., García-Triñanes, P., Teixeira-Pinto, A., & Bao, M. (2013). Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cement and Concrete Composites, 40, 7–13. https://doi.org/10.1016/j.cemconcomp.2013.03.026

 

Leidich, S., Buechele, D., Lauenstein, R., Kluenker, M., & Lind, C. (2016). “Non-hydrolytic” sol–gel synthesis of molybdenum sulfides. Journal of Solid State Chemistry, 242, 175–181. https://doi.org/10.1016/j.jssc.2016.02.020

 

Liu, W., Liu, X., Zhang, P., Wang, Z., Li, X., & Hu, M. (2019). Nano-sized plate-like alumina synthesis via solution combustion. Ceramics International, 45, 9919–9925.

 

Lopes, A. C., Martins, P., & Lanceros-Mendez, S. (2014). Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends. Progress in Surface Science, 89, 239–277. https://doi.org/10.1016/j.progsurf.2014.08.002

 

Mahinroosta, M., & Allahverdi, A. (2018a). Hazardous aluminum dross characterization and recycling strategies: A critical review. Journal of Environmental Management, 223, 452–468. https://doi.org/10.1016/j.jenvman.2018.06.068

 

Mahinroosta, M., & Allahverdi, A. (2018b). Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. Journal of Environmental Management, 212, 278–291. https://doi.org/10.1016/j.jenvman.2018.02.009

 

Mahinroosta, M., & Allahverdi, A. (2018c). A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of Cleaner Production, 179, 93–102. https://doi.org/10.1016/j.jclepro.2018.01.079

 
Mahinroosta, M., & Allahverdi, A. (2020). Production of high purity α- and γ-alumina from aluminum dross. In S. Hashmi, & I. A. Choudhury (Eds.), Encyclopedia of renewable and sustainable materials. Amsterdam: Elsevier.
 

Mahinroosta, M., & Allahverdi, A. (2021). Pilot-scale valorization of hazardous aluminum dross into γ-Al2O3 nanoadsorbent for efficient removal of fluoride. Environmental Technology & Innovation, 23, Article 101549. https://doi.org/10.1016/j.eti.2021.101549

 

Mahinroosta, M., Allahverdi, A., Dong, P., & Bassim, N. (2019). Green template-free synthesis and characterization of mesoporous alumina as a high value-added product in aluminum black dross recycling strategy. Journal of Alloys and Compounds, 792, 161–169. https://doi.org/10.1016/j.jallcom.2019.04.009

 

Meng, L., & Zhao, H. (2020). Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis. Applied Catalysis B: Environmental, 264, Article 118427. https://doi.org/10.1016/j.apcatb.2019.118427

 

Mohammadzadeh, K., Mahinroosta, M., Allahverdi, A., Dong, P., & Bassim, N. (2022). Non-supercritical drying synthesis and characterization of monolithic alumina aerogel from secondary aluminum dross. Ceramics International, 48, 13154–13162. https://doi.org/10.1016/j.ceramint.2022.01.192

 

Muinde, V. M., Onyari, J. M., Wamalwa, B., & Wabomba, J. N. (2020). Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environmental Chemistry and Ecotoxicology, 2, 115–125. https://doi.org/10.1016/j.enceco.2020.07.005

 

Muthu, M., & Santhanam, M. (2018). Effect of reduced graphene oxide, alumina and silica nanoparticles on the deterioration characteristics of Portland cement paste exposed to acidic environment. Cement and Concrete Composites, 91, 118–137. https://doi.org/10.1016/j.cemconcomp.2018.05.005

 

Naderi-Beni, B., & Alizadeh, A. (2020). Development of a new sol-gel route for the preparation of aluminum oxynitride nano-powders. Ceramics International, 46, 913–920. https://doi.org/10.1016/j.ceramint.2019.09.049

 

Najamuddin, S. K., Johari, M. A. M., Maslehuddin, M., & Yusuf, M. O. (2019). Synthesis of low temperature cured alkaline activated silicomanganese fume mortar. Construction and Building Materials, 200, 387–397.

 

Namvar, M., Mahinroosta, M., & Allahverdi, A. (2021). Highly efficient green synthesis of highly pure microporous nanosilica from silicomanganese slag. Ceramics International, 47, 2222–2229. https://doi.org/10.1016/j.ceramint.2020.09.062

 

Namvar, M., Mahinroosta, M., & Allahverdi, A. (2023). Valorization of silicomanganese slag into reusable porous high-performance nanosilica for recovery of water from methylene blue wastewater. Journal of Sustainable Metallurgy, 9, 132–147. https://doi.org/10.1007/s40831-022–00634-5

 

Namvar, M., Mahinroosta, M., Allahverdi, A., & Mohammadzadeh, K. (2022). Preparation of monolithic amorphous silica aerogel through promising valorization of silicomanganese slag. Journal of Non-crystalline Solids, 586, Article 121561. https://doi.org/10.1016/j.jnoncrysol.2022.121561

 

Nath, S. K., & Kumar, S. (2019). Influence of granulated silico-manganese slag on compressive strength and microstructure of ambient cured alkali-activated fly ash binder. Waste and Biomass Valorization, 10, 2045–2055. https://doi.org/10.1007/s12649-018-0213-1

 

Pereira, M. A., Vasconcelos, D. C. L., & Vasconcelos, W. L. (2019). Synthetic aluminosilicates for geopolymer production. Materials Research, 22, Article e20180508. https://doi.org/10.1590/1980-5373-mr-2018-0508

 

Piriya, R. S., Jayabalakrishnan, R. M., Maheswari, M., Boomiraj, K., & Oumabady, S. (2023). Comparative adsorption study of malachite green dye on acid-activated carbon. International Journal of Environmental Analytical Chemistry, 103, 16–30.

 

Rehman, U., Jacob, J., Mahmood, K., Ali, A., Ashfaq, A., Amin, N., Ikram, S., Ahmad,W., & Hussain, S. (2019). Direct growth of ZnSnO nano-wires by thermal evaporation technique for thermoelectric applications. Physica B: Condensed Matter, 570, 232–235. https://doi.org/10.1080/03067319.2020.1849667

 

Sartape, A. S., Mandhare, A. M., Jadhav, V. V., Raut, P. D., Anuse, M. A., & Kolekar, S. S. (2017). Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arabian Journal of Chemistry, 10, S3229–S3238. https://doi.org/10.1016/j.arabjc.2013.12.019

 

Shalygin, A. S., Kozhevnikov, I. V., Gerasimov, E. Y., Andreev, A. S., Lapina, O. B., & Martyanov, O. N. (2017). The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous and Mesoporous Materials, 251, 105–113. https://doi.org/10.1016/j.micromeso.2017.05.053

 

Tavandashti, P., Zandrahimi, M., & Akbari, B. (2009). Agglomeration assessment of nano-sized alumina powders. Iranian Journal of Materials Science and Engineering, 6, 15–19.

 

Thakur, S., Katyal, S. C., & Singh, M. (2009). Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. Journal of Magnetism and Magnetic Materials, 321, 1–7. https://doi.org/10.1016/j.jmmm.2008.07.009

 

Tyson, B. M., Abu Al-Rub, R. K., Yazdanbakhsh, A., & Grasley, Z. (2011). A quantitative method for analyzing the dispersion and agglomeration of nano-particles in composite materials. Composites Part B: Engineering, 42, 1395–1403. https://doi.org/10.1016/j.compositesb.2011.05.020

 

Ullah, S., Ur Rahman, A., Ullah, F., Rashid, A., Arshad, T., Viglašová, E., Galamboš, M., Mahmoodi, N. M., & Ullah, H. (2021). Adsorption of malachite green dye onto mesoporous natural inorganic clays: Their equilibrium isotherm and kinetics studies. Water, 13, 965. https://doi.org/10.3390/w13070965

 

Zhang, Y. J., He, P. Y., Chen, H., & Liu, L. C. (2018). Green transforming metallurgical residue into alkali-activated silicomanganese slag-based cementitious material as photocatalyst. Materials, 11, 1773. https://doi.org/10.3390/ma11091773

 

Zheng, G., Cui, X., Zhang, W., Tong, Z., & Li, F. (2012). Preparation of nano-sized Al2O3–2SiO2 powder by sol–gel plus azeotropic distillation method. Particuology, 10, 42–45. https://doi.org/10.1016/j.partic.2011.07.007

 

Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

Circular Economy
Article number: 100100
Cite this article:
Mahinroosta M, M Moattari R, Allahverdi A, et al. Malachite green dye removal with aluminosilicate nanopowder from aluminum dross and silicomanganese slag. Circular Economy, 2024, 3(3): 100100. https://doi.org/10.1016/j.cec.2024.100100

72

Views

0

Crossref

0

Scopus

Altmetrics

Received: 11 December 2023
Revised: 06 July 2024
Accepted: 26 July 2024
Published: 19 August 2024
© 2024 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return