AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

Qiyan JiangZheng HuHui Zhang( )Youzhi Ma( )
Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

The transcription factor dehydration-responsive element binding protein (DREB) is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L.) and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

References

[1]

E.A. Bray, Plant responses to water deficit, Trends Plant Sci. 2 (1997) 48-54.

[2]

B. Vinocur, A. Altman, Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations, Curr. Opin. Biotechnol. 16 (2005) 123-132.

[3]

P. Langridge, N. Paltridge, G. Fincher, Functional genomics of abiotic stress tolerance in cereals, Brief Funct. Genomic Proteomic 4 (2006) 343-354.

[4]

C. Lata, M. Prasad, Role of DREBs in regulation of abiotic stress responses in plants, J. Exp. Bot. 62 (2011) 4731-4748.

[5]

P.K. Agarwal, P. Agarwal, M.K. Reddy, S.K. Sopory, Role of DREB transcription factors in abiotic and biotic stress tolerance in plants, Plant Cell Rep. 25 (2006) 1263-1274.

[6]

S.S. Hussain, M.A. Kayani, M. Amjad, Transcription factors as tools to engineer enhanced drought tolerance in plants, Biotechnol. Prog. 27 (2011) 297-306.

[7]

K. Yamaguchi-Shinozaki, K. Shinozaki, A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress, Plant Cell 6 (1994) 251-264.

[8]

M.S. Khan, The role of DREB transcription factors in abiotic stress tolerance of plants, Biotechnol. Biotechnol. Equip. 25 (2011) 2433-2442.

[9]

C. Lata, S. Bhutty, R.P. Bahadur, M. Majee, M. Prasad, Association of a SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria talica (L.)], J. Exp. Bot. 62 (2011) 3387-3401.

[10]

M. Kasuga, S. Miura, K. Shinozaki, K. Yamaguchi-Shinozaki, A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer, Plant Cell Physiol. 45 (2004) 346-350.

[11]

K. Nakashima, Y. Ito, K. Yamaguchi-Shinozaki, Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses, Plant Physiol. 149 (2009) 88-95.

[12]

S. Fowler, M.F. Thomashow, Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway, Plant Cell 14 (2002) 1675-1690.

[13]

K. Maruyama, Y. Sakuma, M. Kasuga, Y. Ito, M. Seki, H. Goda, Y. Shimada, S. Yoshida, K. Shinozaki, K. Yamaguchi-Shinozaki, Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems, Plant J. 38 (2004) 982-993.

[14]

K. Lee, K.S. Han, Y.S. Kwon, J.H. Lee, S.H. Kim, W.S. Chung, Y. Kim, S.S. Chun, H.K. Kim, D.W. Bae, Identification of potential DREB2C targets in Arabidopsis thaliana plants overexpression DREB2C using proteomic analysis, Mol. Cell 28 (2009) 383-388.

[15]

L.V. Savitch, G. Allard, M. Seki, L.S. Robert, N.A. Tinker, N.P.A. Huner, K. Shinozaki, J. Singh, The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus, Plant Cell Physiol. 46 (2005) 1525-1539.

[16]

L. Cong, H.C. Zheng, Y.X. Zhang, T. Yao, Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in Tobacco, Plant Sci. 174 (2008) 156-164.

[17]

Y. Ito, K. Katsura, K. Maruyama, T. Taji, M. Kobayashi, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki, Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice, Plant Cell Physiol. 47 (2006) 141-153.

[18]

M.T. Pino, J.S. Skinner, E. Park, Z. Jeknic, P.M. Hayes, M.F. Thomashow, T.H. Chen, Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield, Plant Biotechnol. J. 5 (2007) 591-604.

[19]

P. Bihani, B. Char, S. Bhargava, Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation, J. Agric. Sci. 149 (2011) 95-101.

[20]

P. Agarwal, P.K. Agarwal, A.J. Joshi, S.K. Sopory, M.K. Reddy, Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes, Mol. Biol. Rep. 37 (2010) 1125-1135.

[21]

M. Chen, Q.Y. Wang, X.G. Cheng, Z.S. Xu, L.C. Li, X.G. Ye, L.Q. Xia, Y.Z. Ma, GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants, Biochem. Biophys. Res. Commun. 353 (2007) 299-305.

[22]

S.Q. Gao, H.J. Xu, X.G. Cheng, M. Chen, Z.S. Xu, L.C. Li, X.G. Ye, L.P. Du, X.Y. Hao, Y.Z. Ma, Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max), Chin. Sci. Bull. 50 (2005) 2714-2723.

[23]

T. Jin, Q. Chang, W. Li, D.X. Yin, Z.J. Li, D.L. Wang, B. Liu, L.X. Liu, Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa, Plant Cell Tissue Organ Cult. 100 (2010) 219-227.

[24]
N. Shimada, in: Y. Noguchi, S. Kawada (Eds.), Dictionary of Agriculture, Yokendo, Tokyo, 1987, p. 817.
[25]

J. Zhu, Z. Bie, Y. Li, Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress, Soil Sci. Plant Nutr. 54 (2008) 400-407.

[26]

U. Erturk, N. Sivritepe, C. Yerlikaya, M. Bor, F. Ozdemir, I. Turkan, Responses of the cherry rootstock to salinity in vitro, Biol. Plant. 51 (2007) 597-600.

[27]

J. Shaterian, D. Waterer, H. De Jong, K.K. Tanino, Differential stress responses to NaCl salt application in early- and late-maturing diploid potato (Solanum sp.) clones, Environ. Exp. Bot. 54 (2005) 202-212.

[28]

A. Zhen, Z. Bie, Y. Huang, Z. Liu, Q. Li, Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress, Soil Sci. Plant Nutr. 56 (2010) 263-271.

[29]

X.J. Li, M.F. Yang, H. Chen, L.Q. Qu, F. Chen, S.H. Shen, Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence, Biochim. Biophys. Acta 1804 (2010) 929-940.

[30]

K.V. Madhava Rao, T.V.S. Sresty, Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses, Plant Sci. 157 (2000) 113-128.

[31]

Q.Y. Jiang, H. Chen, X.L. Pan, Y.H. Shi, X.R. Li, G.Y. Zhang, Y.J. Wang, S.G. Xie, S.H. Shen, Proteomic analysis of wheat (Triticum aestivum L.) hybrid necrosis, Plant Sci. 175 (2008) 394-401.

[32]

S. Komatsu, A. Muhammad, R. Rakwal, Separation and characterization of proteins from green and etiolated shoots of rice Oryza sativa L.: towards a rice proteome, Electrophoresis 20 (1999) 630-636.

[33]

P. Sharifi, Evaluation on sixty-eight rice germplasms in cold tolerance at germination stage, Rice Sci. 17 (2010) 77-81.

[34]

K. Çavuşoğlu, S. Kılıç, K. Kabar, Some morphological and anatomical observations during alleviation of salinity (NaCl) stress on seed germination and seedling growth of barley by polyamines, Acta Physiol. Plant. 29 (2007) 551-557.

[35]

F. Barro, P. Barceló, P.A. Lazzerí, P.R. Shewry, A. Martin, J. Ballesteros, Field evaluation and agronomic performance of transgenic wheat, Theor. Appl. Genet. 105 (2002) 980-984.

[36]

A. Bahieldin, H.T. Mahfouz, H.F. Eissa, O.M. Saleh, A.M. Ramadan, I.A. Ahmed, W.E. Dyer, H.A. El-Itriby, M.A. Madkour, Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance, Physiol. Plant. 123 (2005) 421-427.

[37]

Y.C. Boo, J. Jung, Water deficit-induced oxidative stress and antioxidative defenses in rice plants, J. Plant Physiol. 155 (1999) 255-261.

[38]

P.M. Hasegawa, R.A. Bressan, J.K. Zhu, H.J. Bohnert, Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 (2000) 463-499.

[39]

A.D. Hanson, D.A. Gage, Y. Shachar-Hill, Plant one-carbon metabolism and its engineering, Trends Plant Sci. 5 (2000) 206-213.

[40]

H.J. Bohnert, R.G. Jensen, Strategies for engineering water-stress tolerance in plants, Trends Biotechnol. 14 (1996) 89-97.

[41]
T. Takabe, T. Nakamura, M. Nomura, Y. Hayashi, M. Ishitani, Y. Muramoto, A. Tanaka, T. Takabe, Glycinebetaine and the genetic engineering of salinity tolerance in plants, in: K. Satoh, N. Murata (Eds.), Stress Responses of Photosynthetic Organisms, Elsevier Science, Tokyo, 1998, pp. 115–131.
[42]

Y. Narita, H. Taguchi, T. Nakamura, A. Ueda, W. Shi, T. Takabe, Characterization of the salt-inducible methionine synthase from barley leaves, Plant Sci. 167 (2004) 1009-1016.

[43]

H. Sobhanian, N. Motamed, F.R. Jazii, T. Nakamura, S. Komatsu, Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant, J. Proteome Res. 9 (2010) 2882-2897.

[44]

M.J. Jeong, S.C. Park, M.O. Byun, Improvement of salt tolerance in transgenic potato plants by glyceraldehyde-3 phosphate dehydrogenase gene transfer, Mol. Cell 12 (2001) 185-189.

[45]

D.M. Vernon, J.A. Ostrem, H.J. Bohnert, Stress perception and responses in a facultative halophyte: the regulation of salinity-induced genes in Mesembryanthemum crystallinum, Plant Cell Environ. 16 (1993) 437-444.

[46]

K.F. McCue, A.D. Hanson, Drought and salt tolerance: towards understanding and application, Trends Biotechnol. 8 (1990) 358-362.

[47]

J.D. Ashton, D.P.S. Verma, Proline biosynthesis and osmoregulation in plants, Plant J. 4 (1993) 215-223.

[48]

M. Jain, G. Mathur, S. Koul, N.B. Sarin, Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.), Plant Cell Rep. 20 (2001) 463-468.

[49]

R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.

[50]

S. Meneguzzo, C.L.M. Sgherri, F. Navari-Izzo, R. Izzo, Stromal and thylakoid-bound ascorbate peroxidases in NaCl-treated wheat, Physiol. Plant. 104 (1998) 735-740.

[51]

R. Mittler, Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci. 7 (2002) 405-410.

[52]

B. Ezaki, R.C. Gardner, Y. Ezaki, H. Matsumoto, Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress, Plant Physiol. 122 (2000) 657-665.

[53]

M. Katsuhara, T. Otsuka, B. Ezaki, Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis, Plant Sci. 169 (2005) 369-373.

[54]

P. Costa, N. Bahrman, J.M. Frigerio, A. Kermer, C. Plomion, Water-deficit-responsive proteins in maritime pine, Plant Mol. Biol. 38 (1998) 587-596.

[55]

T. Matsumoto, T. Tanaka, H. Sakai, N. Amano, H. Kanamori, K. Kurita, A. Kikuta, K. Kamiya, M. Yamamoto, H. Ikawa, N. Fujii, K. Hori, T. Itoh, K. Sato, Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries, Plant Physiol. 156 (2011) 20-28.

[56]

S. Liu, Y. Cheng, X. Zhang, Q. Guan, S. Nishiuchi, K. Hase, T. Takano, Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance, Plant Mol. Biol. 64 (2007) 49-58.

[57]

J.C. Cushman, Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallium, Eur. J. Biochem. 208 (1992) 259-266.

[58]

V.P. Roxas, S.A. Lodhi, D.K. Garrett, J.R. Mahan, R.D. Allen, Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase, Plant Cell Physiol. 41 (2000) 1229-1234.

[59]

B. Stevanovic, J. Sinzar, O. Glisic, Electrolyte leakage differences between poikilohydrous and homoiohydrous species of Gesneriaceae, Biol. Plant. 40 (1997) 299-303.

[60]

J.A. Hernández, M.S. Almansa, Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves, Physiol. Plant. 115 (2002) 251-257.

[61]

D.A. Meloni, M.A. Oliva, C.A. Martinez, J. Cambraia, Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress, Environ. Exp. Bot. 49 (2003) 69-76.

The Crop Journal
Pages 120-131
Cite this article:
Jiang Q, Hu Z, Zhang H, et al. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. The Crop Journal, 2014, 2(2-3): 120-131. https://doi.org/10.1016/j.cj.2014.02.003

229

Views

1

Downloads

47

Crossref

N/A

Web of Science

49

Scopus

0

CSCD

Altmetrics

Received: 16 October 2013
Revised: 06 January 2014
Accepted: 15 February 2014
Published: 28 February 2014
© 2014 Crop Science Society of China and Institute of Crop Science, CAAS. All rights reserved.
Return