AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (927 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Analysis of simple sequence repeats in rice bean (Vigna umbellata) using an SSR-enriched library

Lixia WangaKyung Do KimbDongying GaobHonglin ChenaSuhua WangaSukHa LeecScott A. JacksonbXuzhen Chenga( )
Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Center for Applied Genetic Technologies, University of Georgia, 30602 Athens, GA, USA
Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Republic of Korea

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Rice bean (Vigna umbellata Thunb.), a warm-season annual legume, is grown in Asia mainly for dried grain or fodder and plays an important role in human and animal nutrition because the grains are rich in protein and some essential fatty acids and minerals. With the aim of expediting the genetic improvement of rice bean, we initiated a project to develop genomic resources and tools for molecular breeding in this little-known but important crop. Here we report the construction of an SSR-enriched genomic library from DNA extracted from pooled young leaf tissues of 22 rice bean genotypes and developing SSR markers. In 433,562 reads generated by a Roche 454 GS-FLX sequencer, we identified 261,458 SSRs, of which 48.8% were of compound form. Dinucleotide repeats were predominant with an absolute proportion of 81.6%, followed by trinucleotides (17.8%). Other types together accounted for 0.6%. The motif AC/GT accounted for 77.7% of the total, followed by AAG/CTT (14.3%), and all others accounted for 12.0%. Among the flanking sequences, 2928 matched putative genes or gene models in the protein database of Arabidopsis thaliana, corresponding with 608 non-redundant Gene Ontology terms. Of these sequences, 11.2% were involved in cellular components, 24.2% were involved molecular functions, and 64.6% were associated with biological processes. Based on homolog analysis, 1595 flanking sequences were similar to mung bean and 500 to common bean genomic sequences. Comparative mapping was conducted using 350 sequences homologous to both mung bean and common bean sequences. Finally, a set of primer pairs were designed, and a validation test showed that 58 of 220 new primers can be used in rice bean and 53 can be transferred to mung bean. However, only 11 were polymorphic when tested on 32 rice bean varieties. We propose that this study lays the groundwork for developing novel SSR markers and will enhance the mapping of qualitative and quantitative traits and marker-assisted selection in rice bean and other Vigna species.

References

[1]
N. Tomooka, The origin of rice bean (Vigna umbellata) and azuki bean (V. angularis): the evolution of two lesser-known Asian beans, in: T. Akimichi (Ed.), An Illustrated Eco-history of the Mekong River Basin, White Lotus Co. Ltd., Bangkok, Thailand. 2009, pp. 33–35.
[2]

K.P. Chandel, B.S. Joshi, R.K. Arora, K.C. Part, Rice bean—a new pulse with high potential, Indian Farm. 28 (1978) 19–22.

[3]

R. Katoch, Nutritional potential of rice bean (Vigna umbellata): an underutilized legume, J. Food Sci. 78 (2013) C8–C16.

[4]
Y. Yao, X.Z. Cheng, L.X. Wang, S.H. Wang, G.X. Ren, Major phenolic compounds, antioxidant capacity and antidiabetic potential of rice bean (Vigna umbellata L.), China, Intl. J. Mol. Sci., 13 2012, pp. 2707–2716.
[5]

G.K. Dwivedi, Tolerance of some crops to soil acidity and response to liming, J. Indian Soc. Soil Sci. 44 (1996) 736–743.

[6]

W. Fan, H.Q. Lou, Y.L. Gong, M.Y. Liu, Z.Q. Wang, J.L. Yang, S.J. Zheng, Identification of early Al-responsive genes in rice bean (Vigna umbellata) roots provides new clues to molecular mechanisms of Al toxicity and tolerance, Plant Cell Environ. 37 (2014) 1586–1597.

[7]

K. Kashiwaba, N. Tomooka, A. Kaga, O.K. Han, D.A. Vaughan, Characterization of resistance to three bruchid species (Callosobruchus spp. Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata), J. Econ. Entomol. 96 (2003) 207–213.

[8]

B.L. Thaware, V.W. Bendale, V.A. Toro, Konkan rice bean-1 (Rb-10), a new fodder rice bean variety for Konkan region of Maharashtra, J. Maharashtra Agric. Univ. 30 (2005) 295–298.

[9]

X.Z. Cheng, S.M. Wang, The History of Chinese Food Legume Varieties, China Agricultural Science and Technology Press, Beijing, 2009 (in Chinese).

[10]

J. Schmutz, S.B. Cannon, J. Schlueter, J.X. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q.J. Song, J.J. Thelen, J.L. Cheng, D. Xu, U. Hellsten, G.D. May, Y. Yu, T. Sakurai, T. Umezawa, M.K. Bhattacharyya, D. Sandhu, B. Valliyodan, E. Lindquist, M. Peto, D. Grant, S.Q. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, B. Abernathy, J.C. Du, Z.X. Tian, L.C. Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X.C. Zhang, K. Shinozaki, H.T. Nguyen, R.A. Wing, P. Cregan, J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R.C. Shoemaker, S.A. Jackson, Genome sequence of the palaeopolyploid soybean, Nature 463 (2010) 178–183.

[11]

J. Schmutz, P.E. McClean, S. Mamidi, G.A. Wu, S.B. Cannon, J. Grimwood, J. Jenkins, S.Q. Shu, Q.J. Song, C. Chavarro, M. Torres-Torres, V. Geffroy, S.M. Moghaddam, D.Y. Gao, B. Abernathy, K. Barry, M. Blair, M.A. Brick, M. Chovatia, P. Gepts, D.M. Goodstein, M. Gonzales, U. Hellsten, D.L. Hyten, G.F. Jia, J.D. Kelly, D. Kudrna, R. Lee, M.M.S. Richard, P.N. Miklas, J.M. Osorno, J. Rodrigues, V. Thareau, C.A. Urrea, M. Wang, Y. Yu, M. Zhang, R.A. Wing, P.B. Cregan, D.S. Rokhsar, S.A. Jackson, A reference genome for common bean and genome-wide analysis of dual domestications, Nat. Genet. 46 (2014) 707–713.

[12]

Y.J. Kang, S.K. Kim, M.Y. Kim, P. Lestari, K.H. Kim, B.K. Ha, T.H. Jun, W.J. Hwang, T. Lee, J. Lee, S. Shim, M.Y. Yoon, Y.E. Jang, K.S. Han, P. Taeprayoon, N. Yoon, P. Somta, P. Tanya, K.S. Kim, J.G. Gwag, J.K. Moon, Y.H. Lee, B.S. Park, A. Bombarely, J.J. Doyle, S.A. Jackson, R. Schafleitner, P. Srinives, R.K. Varshney, S.H. Lee, Genome sequence of mungbean and insights into evolution within Vigna species, Nat. Commun. 5443 (2014).

[13]

Y.J. Kang, D. Satyawan, S. Shim, T. Lee, J. Lee, W.J. Hwang, S.K. Kim, P. Lestari, K. Laosatit, K.H. Kim, T.J. Ha, A. Chitikineni, M.Y. Kim, J.M. Ko, J.G. Gwag, J.K. Moon, Y.H. Lee, B.S. Park, R.K. Varshney, S.H. Lee, Draft genome sequence of adzuki bean, Vigna angularis, Sci. Rep. 5 (2015) 8069.

[14]

D. Zhao, X.Z. Cheng, L.X. Wang, S.H. Wang, Y.L. Ma, Integration of mungbean (Vigna radiata) genetic linkage map, Acta Agron. Sin. 36 (2010) 932–939 (in Chinese with English abstract).

[15]

T. Isemura, A. Kaga, N. Tomooka, T. Shimizu, D.A. Vaughan, The genetics of domestication of rice bean, Vigna umbellata, Ann. Bot. 106 (2010) 927–944.

[16]

P.E. McClean, S. Mamidi, M. McConnell, S. Chikara, R. Lee, Synteny mapping between common bean and soybean reveals extensive blocks of shared loci, BMC Genomics 11 (2010).

[17]

P. Somta, A. Kaga, N. Tomooka, K. Kashiwaba, T. Isemura, B. Chaitieng, P. Srinives, D.A. Vaughan, Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V-nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics, Plant Breed. 125 (2006) 77–84.

[18]

J. Tian, T. Isemura, A. Kaga, D.A. Vaughan, N. Tomooka, Genetic diversity of the rice bean (Vigna umbellata) genepool as assessed by SSR markers, Genome 56 (2013) 717–727.

[19]

L.X. Wang, H.L. Chen, P. Bai, J.X. Wu, S.H. Wang, M.W. Blair, X.Z. Cheng, The transferability and polymorphism of mung bean SSR markers in rice bean germplasm, Mol. Breed. 35 (2015) 77.

[20]

M. Morgante, A.M. Olivieri, PCR-amplified microsatellites as markers in plant genetics, Plant J. 3 (1993) 175–182.

[21]

G. Tóth, Z. Gáspári, J. Jurka, Microsatellites in different eukaryotic genomes: survey and analysis, Genome Res. 10 (2000) 967–981.

[22]

B.W. Legesse, A.A. Myburg, K.V. Pixley, A.M. Botha, Genetic diversity of African maize inbred lines revealed by SSR markers, Hereditas 144 (2007) 10–17.

[23]

L.X. Wang, R.X. Guan, Z.X. Liu, R.Z. Chang, L.J. Qiu, Genetic diversity of Chinese cultivated soybean revealed by SSR markers, Crop Sci. 46 (2006) 1032–1038.

[24]

D.J. Perry, Identification of Canadian durum wheat varieties using a single PCR, Theor. Appl. Genet. 109 (2004) 55–61.

[25]

F. Martin, An application of kernel methods to variety identification based on SSR markers genetic fingerprinting, BMC Bioinf. 12 (2011) 177.

[26]

S.K. Biradar, R.M. Sundaram, T. Thirumurugan, J.S. Bentur, S. Amudhan, V.V. Shenoy, B. Mishra, J. Bennett, N.P. Sarma, Identification of flanking SSR markers for a major rice gall midge resistance gene Gm1 and their validation, Theor. Appl. Genet. 109 (2004) 1468–4173.

[27]

Y.H. Wang, D.D. Poudel, K.H. Hasenstein, Identification of SSR markers associated with saccharification yield using pool-based genome-wide association mapping in sorghum, Genome 54 (2011) 883–889.

[28]

O.A. Gutierrez, A.F. Robinson, J.N. Jenkins, J.C. McCarty, M.J. Wubben, F.E. Callahan, R.L. Nichols, Identification of QTL regions and SSR markers associated with resistance to reniform nematode in Gossypium barbadense L. accession GB713, Theor. Appl. Genet. 122 (2011) 271–280.

[29]

Y.C. Li, A.B. Korol, T. Fahima, A. Beiles, E. Nevo, Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review, Mol. Ecol. 11 (2002) 2453–2465.

[30]

T.W. Hefferon, J.D. Groman, C.E. Yurk, G.R. Cutting, A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 3504–3509.

[31]

C. Schlotterer, Genome evolution: are microsatellites really simple sequences? Curr. Biol. 8 (1998) R132–R134.

[32]

J. Li, M. Båga, P. Hucl, R. Chibbar, Development of microsatellite markers in canary seed (Phalaris canariensis L.), Mol. Breed. 28 (2010) 611–621.

[33]

J.M. Soriano, E. Zuriaga, P. Rubio, G. Llácer, R. Infante, M.L. Badenes, Development and characterization of microsatellite markers in pomegranate (Punica granatum L.), Mol. Breed. 27 (2011) 119–128.

[34]

M. Das, S. Banerjee, R. Dhariwal, S. Vyas, R.R. Mir, N. Topdar, A. Kundu, J.P. Khurana, A.K. Tyagi, D. Sarkar, M.K. Sinha, H.S. Balyan, P.K. Gupta, Development of SSR markers and construction of a linkage map in jute, J. Genet. 91 (2012) 21–31.

[35]

C. Tan, Y. Wu, C.M. Taliaferro, G.E. Bell, D.L. Martin, M.W. Smith, Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy, Mol. Genet. Genomics 289 (2014) 523–531.

[36]

C.D. Ishibashi, A.R. Shaver, D.P. Perrault, S.D. Davis, R.L. Honeycutt, Isolation of microsatellite markers in a chaparral species endemic to southern California, Ceanothus megacarpus (Rhamnaceae), Appl. Plant Sci. 1 (5) (2013) 1200393.

[37]

L.X. Wang, M. El baidouri, B. Abernathy, H.L. Chen, S.H. Wang, S.H. Lee, S.A. Jackson, X.Z. Cheng, Distribution and analysis of SSR in mung bean (Vigna radiata L.) genome based on an SSR-enriched library, Mol. Breed. 35 (2015) 25.

[38]

T. Yang, S. Bao, R. Ford, T. Jia, J. Guan, Y. He, X. Sun, J. Jiang, J. Hao, X. Zhang, X. Zong, High-throughput novel microsatellite marker of faba bean via next generation sequencing, BMC Genomics 13 (2012) 602.

[39]

J.J. Doyle, J.L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull. 19 (1987) 11–15.

[40]

T.C. Glenn, N.A. Schable, Isolating microsatellite DNA loci, Methods Enzymol. 395 (2005) 202–222.

[41]

Z. Gao, J. Wu, Z. Liu, L. Wang, H. Ren, Q. Shu, Rapid microsatellite development for tree peony and its implications, BMC Genomics 14 (2013) 886.

[42]

P. Rice, I. Longden, A. Bleasby, EMBOSS: the European molecular biology open software suite, Trends Genet. 16 (2000) 276–277.

[43]

A. Conesa, S. Gotz, J.M. Garcia-Gomez, J. Terol, M. Talon, M. Robles, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics 21 (2005) 3674–3676.

[44]

T. Trevor, A. Lawn, ArkMAP: integrating genomic maps across species and data sources, BMC Bioinf. 14 (2013) 246.

[45]

S. Rozen, H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, Methods Mol. Biol. 132 (2000) 365–386.

[46]

A. Ayana, E. Bekele, T. Bryngelsson, Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD), Hereditas 132 (2000) 249–254.

[47]

H. Sonah, R.K. Deshmukh, A. Sharma, V.P. Singh, D.K. Gupta, R.N. Gacche, J.C. Rana, N.K. Singh, T.R. Sharma, Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium, PLoS One 6 (2011), e21298.

[48]

S.R. Liu, W.Y. Li, D. Long, C.G. Hu, J.Z. Zhang, Development and characterization of genomic and expressed SSRs in Citrus by genome-wide analysis, PLoS One 8 (2013).

[49]

P.F. Cavagnaro, D.A. Senalik, L.M. Yang, P.W. Simon, T.T. Harkins, C.D. Kodira, S.W. Huang, Y.Q. Weng, Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.), BMC Genomics 11 (2010) 569.

[50]

C. Zou, C. Lu, Y. Zhang, G. Song, Distribution and characterization of simple sequence repeats in Gossypium raimondii genome, Bioinformation 8 (2012) 801–806.

[51]

K.T. Moe, J.W. Chung, Y.I. Cho, J.K. Moon, J.H. Ku, J.K. Jung, J. Lee, Y.J. Park, Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean, J. Integr. Plant Biol. 53 (2011) 63–73.

[52]

S.K. Gupta, R. Bansal, T. Gopalakrishna, Development and characterization of genic SSR markers for mungbean (Vigna radiata (L.) Wilczek), Euphytica 195 (2014) 245–258.

[53]

M.W. Blair, N. Hurtado, C.M. Chavarro, M.C. Munoz-Torres, M.C. Giraldo, F. Pedraza, J. Tomkins, R. Wing, Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series, BMC Plant Biol. 11 (2011) 50.

[54]

J.H. Mun, D.J. Kim, H.K. Choi, J. Gish, F. Debelle, J. Mudge, R. Denny, G. Endre, O. Saurat, A.M. Dudez, G.B. Kiss, B. Roe, N.D. Young, D.R. Cook, Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps, Genetics 172 (2006) 2541–2555.

[55]

J. Qian, H. Xu, J. Song, J. Xu, Y. Zhu, S. Chen, Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum, Gene 512 (2013) 331–336.

[56]

W. Guo, C. Cai, C. Wang, Z. Han, X. Song, K. Wang, X. Niu, K. Lu, B. Shi, T. Zhang, A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium, Genetics 176 (2007) 527–541.

[57]

D. Shen, H. Sun, M. Huang, Y. Zheng, Y. Qiu, X. Li, Z. Fei, Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.), BMC Genomics 14 (2013) 721.

[58]

L.X. Wang, X.Z. Cheng, S.H. Wang, H. Liang, D. Zhao, N. Xu, Genetic diversity of adzuki bean germplasm resources revealed by SSR markers, Acta Agron. Sin. 35 (2009) 1858–1865 (in Chinese with English abstract).

[59]

M. Mimura, K. Yasua, H. Yamaguchi, RAPD variation in wild, weedy and cultivated adzuki beans in Asia, Genet. Resour. Crop. Evol. 47 (2000) 603–610.

[60]

A. Kaga, K. Hosaka, T. Kimura, S. Misoo, O. Kamijima, Application of random amplified polymorphic DNA (RAPD) analysis for adzuki bean and its related genera, Sci. Rep. Fac. Agric. 20 (1993) 171–176.

[61]

H.X. Xu, T. Jing, N. Tomooka, A. Kaga, T. Isemura, D.A. Vaughan, Genetic diversity of the azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) gene pool as assessed by SSR markers, Genome 51 (2008) 728–738.

[62]

Y. Liu, X.Z. Cheng, L.X. Wang, S.H. Wang, P. Bai, C.S. Wu, Genetic diversity research of mungbean germplasm resources by SSR markers in China, Sci. Agric. Sin. 46 (2013) 4197–4209 (in Chinese with English abstract).

[63]

C. Sangiri, A. Kaga, N. Tomooka, D. Vaughan, P. Srinives, Genetic diversity of the mungbean (Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis, Aust. J. Bot. 55 (2007) 837–847.

[64]

B. Chaitieng, A. Kaga, N. Tomooka, T. Isemura, Y. Kuroda, D.A. Vaughan, Development of a black gram [Vigna mungo (L.) Hepper] linkage map and its comparison with an azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] linkage map, Theor. Appl. Genet. 113 (2006) 1261–1269.

[65]

O.K. Han, A. Kaga, T. Isemura, X.W. Wang, N. Tomooka, D.A. Vaughan, A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi], Theor. Appl. Genet. 111 (2005) 1278–1287.

[66]

M.E. Humphry, C.J. Lambrides, S.C. Chapman, E.A.B. Aitken, B.C. Imrie, R.J. Lawn, C.L. McIntyre, C.J. Liu, Relationships between hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis, Plant Breed. 124 (2005) 292–298.

The Crop Journal
Pages 40-47
Cite this article:
Wang L, Kim KD, Gao D, et al. Analysis of simple sequence repeats in rice bean (Vigna umbellata) using an SSR-enriched library. The Crop Journal, 2016, 4(1): 40-47. https://doi.org/10.1016/j.cj.2015.09.004

310

Views

2

Downloads

12

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 23 April 2015
Revised: 28 September 2015
Accepted: 27 November 2015
Published: 04 December 2015
© 2015 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return