AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat

Chunlian Lia,b,cGuihua Baic,d( )Shiaoman ChaoeBrett CarverfZhonghua Wanga
College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
Agronomy Department, Kansas State University, Manhattan, KS 66506, USA
Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS 66506, USA
Cereal Crops Research Unit, USDA-ARS, Fargo, ND, USA
Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK 74078, USA

Peer review under responsibility of Crop Science Society of China and Institute of Crop Sciences, CAAS.

Show Author Information

Abstract

Wheat (Triticum aestivum L.) grain quality traits that are controlled by quantitative traits loci (QTL) define suitable growing areas and potential end-use products of a wheat cultivar. To dissect QTL for these traits including protein content (GPC); test weight (TW); single kernel characterization system (SKCS)-estimated kernel weight (SKW); kernel diameter (KD); kernel hardness measured by near-infrared reflectance spectroscopy (NIRS) hardness index (NHI); and SKCS-hardness index (SHI), a high-density genetic map with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers was developed using recombinant inbred lines (RILs) derived from Ning7840 × Clark. The RILs were evaluated for these quality traits in seven Oklahoma environments from 2001 to 2003. A total of 41 QTL with additive effects on different traits were mapped on most wheat chromosomes, excluding 1A, 2A, 3D, 4D, 6D, and 7B. Seven chromosome regions showed either tightly linked QTL or QTL with pleiotropic effects on two to four traits. Ten pairs of QTL showed additive × additive effects (AA), four QTL were involved in additive × environment (AE) effects, and one was involved in AAE effects. Two to eleven QTL for each of the six traits and 139 tightly linked markers to these QTL were identified. The findings shed light on the inheritance of wheat grain quality traits and provide DNA markers for manipulating these important traits to improve quality of new wheat cultivars.

References

[1]

M. Prasad, N. Kumar, P.L. Kulwal, M.S. Röder, H.S. Balyan, H.S. Dhaliwal, P.K. Gupta, QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat, Theor. Appl. Genet. 106 (2003) 659–667.

[2]

A.S. Turner, R.P. Bradburne, L. Fish, J.W. Snape, New quantitative trait loci influencing grain texture and protein content in bread wheat, J. Cereal Sci. 40 (2004) 51–60.

[3]

X.Q. Huang, S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys, J.S. Noll, D.J. Somers, P.D. Brown, Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheat (Triticum aestivum L.), Theor. Appl. Genet. 113 (2006) 753–766.

[4]

A. Kunert, A.A. Naz, O. Dedeck, K. Pillen, J. Léon, AB-QTL analysis in winter wheat: Ι. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favorable alleles for milling and baking quality traits, Theor. Appl. Genet. 115 (2007) 683–695.

[5]

W. Zhang, S. Chao, F. Manthey, O. Chicaiza, J.C. Brevis, V. Echenique, J. Dubcovsky, QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat, Theor. Appl. Genet. 117 (2008) 1361–1377.

[6]

Y.L. Li, Y. Song, R.H. Zhou, G. Branlard, J.Z. Jia, Detection of QTL for bread-making quality in wheat using a recombinant inbred line population, Plant Breed. 128 (2009) 235–243.

[7]

L. Zhao, K.P. Zhang, B. Liu, Z.Y. Deng, H.L. Qu, J.C. Tian, A comparison of grain protein content QTL and flour protein content QTL across environments in cultivated wheat, Euphytica 174 (2010) 325–335.

[8]

J.C. Reif, M. Gowda, H.P. Maurer, C.F.H. Longin, V. Korzun, E. Ebmeyer, R. Bothe, C. Pietsch, T. Würschum, Association mapping for quality traits in soft winter wheat, Theor. Appl. Genet. 122 (2011) 961–970.

[9]

J. Li, F. Cui, A.M. Ding, C.H. Zhao, X.Q. Wang, L. Wang, Y.G. Bao, X.L. Qi, X.F. Li, J.R. Gao, D.S. Feng, H.G. Wang, QTL detection of seven quality traits in wheat using two related recombinant inbred line population, Euphytica 183 (2012) 207–226.

[10]

M. Bogard, V. Allard, P. Martre, E. Heumez, J.W. Snape, S. Orford, S. Griffiths, O. Gaju, J. Foulkes, J.L. Gouis, Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations, Mol. Breed. 31 (2013) 587–599.

[11]

M. Echeverry-Solarte, A. Kumar, S. Kianian, S. Simsek, M.S. Alamri, E.E. Mantovani, P.E. McClean, E.L. Deckard, E. Elias, B. Schatz, S.S. Xu, M. Mergoum, New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes, Theor. Appl. Genet. 128 (2015) 893–912.

[12]

C.A. McCartney, D.J. Somers, D.G. Humphreys, O. Lukow, N. Ames, J. Noll, S. Cloutier, B.D. McCallum, Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’, Genome 48 (2005) 870–883.

[13]

B. Narasimhamoorthy, B.S. Gill, A.K. Fritz, J.C. Nelson, G.L. Brown-Guedira, Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population, Theor. Appl. Genet. 112 (2006) 787–796.

[14]

X.Y. Sun, K. Wu, Y. Zhao, F.M. Kong, G.Z. Han, H.M. Jiang, X.J. Huang, R.J. Li, H.G. Wang, S.S. Li, QTL analysis of kernel shape and weight using recombinant inbred lines in wheat, Euphytica 165 (2009) 615–624.

[15]

D. Bennett, A. Izanloo, M. Reynolds, H. Kuchel, P. Langridge, T. Schnurbusch, Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments, Theor. Appl. Genet. 125 (2012) 255–271.

[16]

R.M. Patil, S.A. Tamhankar, M.D. Oak, A.L. Raut, B.K. Honrao, V.S. Rao, S.C. Misra, Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.), Euphytica 190 (2013) 117–129.

[17]

N. Kumar, P.L. Kulwal, A. Gaur, A.K. Tyagi, J.P. Khurana, P. Khurana, H.S. Balyan, P.K. Gupta, QTL analysis for grain weight in common wheat, Euphytica 151 (2006) 135–144.

[18]

S.S. Li, J.Z. Jia, X.Y. Wei, X.C. Zhang, L.Z. Li, H.M. Chen, Y.D. Fan, H.Y. Sun, X.H. Zhao, T.D. Lei, Y.F. Xu, F.S. Jiang, H.G. Wang, L.H. Li, A intervarietal genetic map and QTL analysis for yield traits in wheat, Mol. Breed. 20 (2007) 167–178.

[19]

X.C. Sun, F. Marza, H.X. Ma, B.F. Carver, G.H. Bai, Mapping quantitative trait loci for quality factors in an inter-class of US and Chinese wheat, Theor. Appl. Genet. 120 (2010) 1041–1051.

[20]

P. Ramya, A. Chaubal, K. Kulkarni, L. Gupta, N. Kadoo, H.S. Dhaliwal, P. Chhuneja, M. Lagu, V. Gupta, QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.), J. Appl. Genet. 51 (2010) 421–429.

[21]

Z.Q. Su, C.Y. Hao, L.F. Wang, Y.C. Dong, X.Y. Zhang, Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.), Theor. Appl. Genet. 122 (2011) 211–223.

[22]

R.R. Mir, N. Kumar, V. Jaiswal, N. Girdharwal, M. Prasas, H.S. Balyan, P.K. Gupta, Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping, Mol. Breed. 29 (2012) 963–972.

[23]

F. Cui, C.H. Zhao, A.M. Ding, J. Li, L. Wang, X.F. Li, Y.G. Bao, J.M. Li, H.G. Wang, Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations, Theor. Appl. Genet. 127 (2014) 659–675.

[24]

K.G. Campbell, C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, G. Hareland, Quantitative trait loci associated with kernel traits in soft × hard wheat cross, Crop Sci. 39 (1999) 1184–1195.

[25]

B.B. Dholakia, J.S.S. Ammiraju, H. Singh, M.D. Lagu, M.S. Röder, V.S. Rao, Molecular marker analysis of kernel size and shape in bread wheat, Plant Breed. 122 (2003) 392–395.

[26]

F. Breseghello, M.E. Sorrells, Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars, Genetics 177 (2006) 1165–1177.

[27]

F. Breseghello, M.E. Sorrells, QTL analysis of kernel size and shape in two hexaploid wheat mapping populations, Field Crop Res. 101 (2007) 172–179.

[28]

T.J. Tsilo, G.A. Hareland, S. Simsek, S. Chao, J.A. Anderson, Genome mapping of kernel characteristics in hard red spring wheat breeding lines, Theor. Appl. Genet. 121 (2010) 717–730.

[29]

M. Arbelbide, R. Bernardo, Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat, Theor. Appl. Genet. 112 (2006) 885–890.

[30]

A.A. Galande, R. Tiwari, J.S.S. Ammiraju, D.K. Santra, M.D. Lagu, V.S. Rao, V.S. Gupta, B.K. Misra, S. Nagarajan, P.K. Ranjekar, Genetic analysis of kernel hardness in bread wheat using PCR-based markers, Theor. Appl. Genet. 103 (2001) 601–606.

[31]

S. Crepieux, C. Lebreton, P. Flament, G. Charmet, Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength, Theor. Appl. Genet. 111 (2005) 1409–1419.

[32]

R.M. Weightman, S. Millar, J. Alava, M.J. Foulkes, L. Fish, J.W. Snape, Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat, J. Cereal Sci. 47 (2008) 457–468.

[33]

G.M. Wang, J.M. Leonard, A.S. Ross, C.J. Peterson, R.S. Zemetra, K.G. Campbell, O. Riera-Lizarazu, Identification of genetic factors controlling kernel hardness and related traits in a recombinant inbred population derived from a soft × ‘extra-soft’ wheat (Triticum aestivum L.) cross, Theor. Appl. Genet. 124 (2012) 207–221.

[34]

H.M. Li, H. Liang, Z.X. Tang, H.Q. Zhang, B.J. Yan, Z.L. Ren, QTL analysis for grain pentosans and hardness index in a Chinese 1RS.1BL × non-1RS.1BL wheat cross, Plant Mol. Biol. Report. 31 (2013) 477–484.

[35]

S. Deschamps, M. Campbell, Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery, Mol. Breed. 25 (2010) 553–570.

[36]

J. Jannink, A.J. Lorenz, Genomic selection in plant breeding: from theory to practice, Brief. Funct. Genomics 9 (2010) 166–177.

[37]

G.H. Bai, F.L. Kolb, G. Shaner, L.L. Domier, Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat, Phytopathology 89 (1999) 343–348.

[38]

H.W. Ohm, G. Shaner, J.E. Foster, F.L. Patterson, G. Buechley, Registration of Clark wheat, Crop Sci. 28 (1988) 1031–1032.

[39]

D.D. Zhang, G.H. Bai, C.S. Zhu, J.M. Yu, B.F. Carver, Genetic diversity, population structure, and linkage disequilibrium in U.S. elite winter wheat, Plant, Genome 3 (2010) 117–127.

[40]

C. Cavanagh, S. Chao, S. Wang, B.E. Huang, S. Stephen, S. Kiani, K. Forrest, C. Saintenac, B. Brown-Guedira, A. Akhunova, D. See, G. Bai, M. Pumphrey, L. Tomar, D. Wong, S. Kong, M. Reynolds, M.L. da Silva, H. Bockelman, L. Talbert, J.A. Anderson, S. Dreisigacker, S. Baenziger, A. Carter, V. Korzun, P.L. Morrell, J. Dubcovsky, M. Morell, M. Sorrells, M. Hayden, E. Akhunov, Genomewide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 8507-8062.

[41]

C.L. Li, G.H. Ba, B.F. Carver, S. Chao, Z.H. Wang, Single nucleotide polymorphism markers linked to QTL for wheat yield traits, Euphytica (2015), http://dx.doi.org/10.1007/s10681-015-1475-3.

[42]
J.K. Wang, H.H. Li, L.Y. Zhang, L. Meng, QTL IciMapping Version 3.2, 2012Webpage http://www.isbreeding.net.
[43]

J.S. Wang, W.H. Liu, H. Wang, L.H. Li, J. Wu, X.M. Yang, X.Q. Li, A.N. Gao, QTL mapping of yield-related traits in the wheat germplasm 3228, Euphytica 177 (2011) 277–292.

The Crop Journal
Pages 1-11
Cite this article:
Li C, Bai G, Chao S, et al. Single nucleotide polymorphisms linked to quantitative trait loci for grain quality traits in wheat. The Crop Journal, 2016, 4(1): 1-11. https://doi.org/10.1016/j.cj.2015.10.002

269

Views

2

Downloads

31

Crossref

N/A

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 03 September 2015
Revised: 29 October 2015
Accepted: 27 November 2015
Published: 04 December 2015
© 2015 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return