AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana

Yanyan LvaSanxiong FuaSong ChenaWei ZhangaCunkou Qia,b( )
Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Ethylene response factor proteins play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not well understood. In this study, we isolated BnERF2.4 from Brassica napus L. to study its function in submergence tolerance. The expression of the BnERF2.4 gene in B. napus and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by quantitative RT-PCR. The expression of BnERF2.4 was induced by submergence in B. napus and the overexpression of BnERF2.4 in Arabidopsis increased the level of tolerance to submergence and oxidative stress. A histochemical method detected lower levels of H2O2, O2•− and malondialdehyde (MDA) in transgenic Arabidopsis. Compared to the wild type, transgenic lines also had higher soluble sugar content and higher activity of antioxidant enzymes, which helped to protect plants against the oxidative damage caused by submergence. It was concluded that BnERF2.4 increased the tolerance of plants to submergence stress and may be involved in regulating soluble sugar content and the antioxidant system in defense against submergence stress.

References

[1]

A. Maryam, S. Nasreen, A review: water logging effects on morphological, anatomical, physiological and biochemical attributes of food and cash crops, Int. J. Water. Resour. Environ. Sci. 1 (2012) 113-120.

[2]

F. Ahmed, M.Y. Rafii, M.R. Ismail, A.S. Juraimi, H.A. Rahim, R. Asfaliza, M.A. Latif, Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects, Biomed. Res. Int. 963525 (2013).

[3]

M.B. Jackon, T.D. Colmer, Response and adaptation by plants to flooding stress, Ann. Bot. 96 (2005) 501-505.

[4]

M.A. Ashraf, Waterlogging stress in plants: a review, Afr. J. Agric. Res. 7 (2012) 1976-1981.

[5]

M. Irfan, S. Hayat, Q. Hayat, S. Afroz, A. Ahmad, Physiological and biochemical changes in plants under waterlogging, Protoplasma 241 (2010) 3-17.

[6]

E.S. Dennis, R. Dolferus, M. Ellis, M. Rahman, Y. Wu, F.U. Hoeren, A. Grover, K.P. Ismond, A.G. Good, W.J. Peacock, Molecular strategies for improving waterlogging tolerance in plants, J. Exp. Bot. 51 (2000) 89-97.

[7]

V.P. Grichko, B.R. Glick, Ethylene and flooding stress in plants, Plant Physiol. Biochem. 39 (2001) 1-9.

[8]

M.A. Hossain, S.N. Uddin, Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia, Aust. J. Crop. Sci. 5 (2011) 1094-1101.

[9]

P. Verboven, O. Pedersen, E. Herremans, Q.T. Ho, B.M. Nicolaï, T.D. Colmer, N. Teakle, Root aeration via aerenchymatous phellem: three-dimensional micro-imaging and radial O2 profiles in Melilotus siculus, New. Phytol. 193 (2012) 420-431.

[10]

K. Shiono, S. Ogawa, S. Yamazaki, H. Isoda, T. Fujimura, M. Nakazono, T.D. Colmer, Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths, Ann. Bot. 107 (2011) 89-99.

[11]

D.M. Yin, S.M. Chen, F.D. Chen, J.F. Jiang, Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp, Mol. Biol. Rep. 40 (2013) 4581-4590.

[12]

Z.S. Xu, M. Chen, L.C. Li, Y.Z. Ma, Functions of the ERF transcription factor family in plants, Botany 86 (2008) 969-977.

[13]

G.Y. Zhang, M. Chen, X.P. Chen, Z.S. Xu, S. Guan, L.C. Li, A.L. Li, J.M. Guo, L. Mao, Y.Z. Ma, Phylogeny, gene structures, and expression patters of the ERF gene family in soybean (Glycine max L.), J. Exp. Bot. 59 (2008) 4095-4107.

[14]

T. Nakano, K. Suzuki, T. Fujimura, H. Shinshi, Genome-wide analysis of the ERF gene family in Arabidopsis and rice, Plant Physiol. 140 (2006) 411-432.

[15]

Y. Sakuma, Q. Liu, J.G. Dubouzet, H. Abe, K. Shinozaki, K. Yamaguchi-Shinozaki, DNA-binding specificity of ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression, Biochem. Biophys. Res. Commun. 290 (2002) 998-1009.

[16]

Y.F. Cao, F.M. Song, R.M. Goodman, Z. Zheng, Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress, J. Plant Physiol. 163 (2006) 1167-1178.

[17]

A.M. Sharoni, M. Nuruzzaman, K. Satoh, T. Shimizu, H. Kondoh, T. Sasaya, I.R. Choi, T. Omura, S. Kikuchi, Gene structure, classification and expression models of the AP2/EREBP transcription factor family in rice, Plant. Cell. Physiol. 52 (2011) 344-360.

[18]

L. Oñate-Sánchez, K.B. Singh, Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection, Plant Physiol. 128 (2002) 1313-1322.

[19]

J. Zhuang, J.M. Chen, Q.H. Yao, F. Xiong, C.C. Sun, X.R. Zhou, J. Zhang, A.S. Xiong, Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum, Mol. Biol. Rep. 38 (2011) 745-753.

[20]

G.Y. Zhang, M. Chen, L.C. Li, Z.S. Xu, X.P. Chen, J.M. Guo, Y.Z. Ma, Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco, J. Exp. Bot. 60 (2009) 3781-3796.

[21]

H.W. Zhang, W. Liu, L.Y. Wan, F. Li, L.Y. Dai, D.J. Li, Z.J. Zhang, R.F. Huang, Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice, Transgenic Res. 19 (2010) 809-818.

[22]

Z.J. Zhang, F. Li, D.J. Li, H.W. Zhang, R.F. Huang, Expression of ethylene response factor JERF1 in rice improves tolerance to drought, Planta 232 (2010) 765-774.

[23]

L.J. Wu, Z.J. Zhang, H.W. Zhang, X.C. Wang, R.F. Huang, Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing, Plant Physiol. 148 (2008) 1953-1963.

[24]

Z.J. Zhang, J. Wang, R.X. Zhang, R.F. Huang, The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis, Plant. J. 71 (2012) 273-287.

[25]

K.N. Xu, X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A.M. Ismail, J. Bailey-Serres, P.C. Ronald, D.J. Mackill, Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice, Nature 442 (2006) 705-708.

[26]

T. Fukao, K.N. Xu, P.C. Ronald, J. Bailey-Serres, A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice, Plant Cell 18 (2006) 2021-2034.

[27]

T. Fukao, J. Bailey-Serres, Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 16814-16819.

[28]

F. Licausi, J.T. van Dongen, B. Giuntoli, G. Novi, A. Santaniello, P. Geigenberger, P. Perata, HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana, Plant. J. 62 (2010) 302-315.

[29]

S.Y. Fujimoto, M. Ohta, A. Usui, H. Shinshi, M. Ohme-Takagi, Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression, Plant Cell 12 (2000) 393-404.

[30]

S. Dey, A. Corina Vlot, Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants, Front. Plant Sci. 6 (2015) 1-7.

[31]

L.V. Savitch, G. Allard, M. Seki, L.S. Robert, N.A. Tinker, N.P.A. Huner, K. Shinozaki, J. Singh, The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus, Plant Cell Physiol. 46 (2005) 1525-1539.

[32]

A.S. Xiong, H.H. Jiang, J. Zhuang, R.H. Peng, X.F. Jin, B. Zhu, F. Wang, J. Zhang, Q.H. Yao, Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis, Mol. Biotechnol. 53 (2013) 198-206.

[33]

S.J. Clough, A.F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. 16 (1998) 735-743.

[34]

R.A. Jefferson, T.A. Kayanagh, M.W. Bevan, GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO. J. 6 (1987) 3901-3907.

[35]

R.L. Heath, L. Packer, Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys. 125 (1968) 189-198.

[36]

M.C. Romero-Puertas, M. Rodríguez-Serrano, F.J. Corpas, M. Gómez, L.A. Del Río, L.M. Sandalio, Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves, Plant. Cell. Environ. 27 (2004) 1122-1134.

[37]

C.N. Giannopolitis, S.K. Ries, Superoxide dismutase. I. Occurrence in high plants, Plant. Physiol. 59 (1977) 309-314.

[38]

H. Aebi, Catalase in vitro, Method. Enzymol. 105 (1984) 121-126.

[39]

X. Zheng, R.B. Van Huystee, Peroxidase-regulated elongation of segments from peanut hypocotyls, Plant Sci. 81 (1992) 47-56.

[40]

Q.Y. Tang, C.X. Zhang, Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research, Insect Sci. 20 (2013) 254-260.

[41]

K.R. Jaglo, S. Kleff, K.L. Amundsen, X. Zhang, V. Haake, J.Z. Zhang, T. Deits, M.F. Thomashow, Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species, Plant Physiol. 127 (2001) 910-917.

[42]

T.J. Zhao, S. Sun, Y. Liu, J.M. Liu, Q. Liu, Y.B. Yan, H.M. Zhou, Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus, J. Biol. Chem. 281 (2006) 10752-10759.

[43]

M. Berrocal-Lobo, A. Molina, R. Solano, Constitutive expression of ethylene-response-factor1 in Arabidopsis confers resistance to several necrotrophic fungi, Plant J. 29 (2002) 23-32.

[44]

M. Berrocal-Lobo, A. Molina, Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum, Mol. Plant-Microbe Interact. 17 (2004) 763-770.

[45]

U. Fischer, W. Dröge-Laser, Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus, Mol. Plant-Microbe Interact. 17 (2004) 1162-1171.

[46]

R.K. Sairam, D. Kumutha, K. Ezhilmathi, V. Chinnusamy, R.C. Meena, Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea, Biol. Plantarum 53 (2009) 493-504.

[47]

M.C. Drew, E.J. Sisworo, Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley, New Phytol. 79 (1977) 567-571.

[48]

O. Blokhina, E. Virolainen, K.V. Fagerstedt, Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot. 91 (2003) 179-194.

[49]

W.J. Zhou, X.Q. Lin, Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.), Field Crops. Res. 44 (1995) 103-110.

[50]

A.I. Malik, T.D. Colmer, H. Lambers, T.L. Setter, M. Schortemeyer, Short-term waterlogging has long-term effects on the growth and physiology of wheat, New. Phytol. 153 (2002) 225-236.

[51]

S. Ahmed, E. Nawata, M. Hosokawa, Y. Domae, T. Sakuratani, Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging, Plant. Sci. 163 (2002) 117-123.

[52]

D. Kumutha, R.K. Sairam, K. Ezhilmathi, V. Chinnusamy, R.C. Meena, Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.) Upregulation of sucrose synthase an alcohol dehydrogenase, Plant Sci. 175 (2008) 706-716.

[53]

D. Kumutha, K. Ezhilmathi, R.K. Sairam, G.C. Srivastava, P.S. Deshmukh, R.C. Meena, Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes, Biol. Plantarum 53 (2009) 75-84.

[54]

I. Couée, C. Sulmon, G. Gouesbet, A.E. Amrani, Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants, J. Exp. Bot. 57 (2006) 449-459.

[55]

E. Loreti, A. Poggi, G. Novi, A. Alpi, P. Perata, A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia, Plant Physiol. 137 (2005) 1130-1138.

[56]

R.K. Sairam, K. Dharmal, V. Chinnusamy, R.C. Meena, Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata), J. Plant Physiol. 166 (2009) 602-616.

[57]

G.P. Zhang, K. Tanakamaru, J. Abe, S. Morita, Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance, Acta Physiol. Plant. 29 (2007) 171-176.

[58]

L.J. Marnett, Oxy radicals, lipid peroxidation and DNA damage, Toxicology 181–182 (2002) 219-222.

[59]

M. Choudhary, U.K. Jetley, M.A. Khan, S. Zutshi, T. Fatma, Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5, Ecotox. Environ. Safe. 66 (2007) 204-209.

[60]

R. Jamei, R. Heidari, J. Khara, S. Zare, Hypoxia induced changes in the lipid peroxidation, membrane permeability, reactive oxygen species generation, and antioxidant response systems in Zea mays leaves, Turk. J. Biol. 33 (2009) 45-52.

[61]

Z. Hossain, M.F. López-Climent, V. Arbona, R.M. Pérez-Clemente, A. Gómez-Cadenas, Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage, J. Plant Physiol. 166 (2009) 1391-1404.

[62]

K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373-399.

[63]

C. Li, D. Jiang, B. Wollenweber, Y. Li, T. Dai, W. Cao, Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat, Plant Sci. 180 (2011) 672-678.

The Crop Journal
Pages 199-211
Cite this article:
Lv Y, Fu S, Chen S, et al. Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. The Crop Journal, 2016, 4(3): 199-211. https://doi.org/10.1016/j.cj.2016.01.004

254

Views

2

Downloads

33

Crossref

N/A

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 13 October 2015
Revised: 14 January 2016
Accepted: 02 February 2016
Published: 11 February 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return