AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (409 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Estimation of biomass in wheat using random forest regression algorithm and remote sensing data

Li'ai WangaXudong ZhoubXinkai ZhuaZhaodi DongaWenshan Guoa( )
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
Information Engineering College of Yangzhou University, Yangzhou 225009, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Wheat biomass can be estimated using appropriate spectral vegetation indices. However, the accuracy of estimation should be further improved for on-farm crop management. Previous studies focused on developing vegetation indices, however limited research exists on modeling algorithms. The emerging Random Forest (RF) machine-learning algorithm is regarded as one of the most precise prediction methods for regression modeling. The objectives of this study were to (1) investigate the applicability of the RF regression algorithm for remotely estimating wheat biomass, (2) test the performance of the RF regression model, and (3) compare the performance of the RF algorithm with support vector regression (SVR) and artificial neural network (ANN) machine-learning algorithms for wheat biomass estimation. Single HJ-CCD images of wheat from test sites in Jiangsu province were obtained during the jointing, booting, and anthesis stages of growth. Fifteen vegetation indices were calculated based on these images. In-situ wheat above-ground dry biomass was measured during the HJ-CCD data acquisition. The results showed that the RF model produced more accurate estimates of wheat biomass than the SVR and ANN models at each stage, and its robustness is as good as SVR but better than ANN. The RF algorithm provides a useful exploratory and predictive tool for estimating wheat biomass on a large scale in Southern China.

References

[1]

A. Kross, H. McNairn, D. Lapen, M. Sunohara, C. Champagne, Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, Int. J. Appl. Earth Obs. Geoinf. 34 (2015) 235-248.

[2]

Y.Y. Fu, G.J. Yang, J.H. Wang, X.Y. Song, H.K. Feng, Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements, Comput. Electron. Argic. 100 (2014) 51-59.

[3]

M.L. Gnyp, Y.X. Miao, F. Yuan, S.L. Ustin, K. Yu, Y.K. Yao, S.Y. Huang, G. Bareth, Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages, Field Crops Res. 155 (2014) 42-55.

[4]

S. Gao, Z. Niu, N. Huang, X.H. Hou, Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2, Int. J. Appl. Earth Obs. Geoinf. 24 (2013) 1-8.

[5]

X.L. Jin, G.J. Yang, X.G. Xu, H. Yang, H.K. Feng, Z.H. Li, J.X. Shen, C.J. Zhao, Y.B. Lan, Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data, Remote Sens. 7 (2015) 13251-13272.

[6]

C.J. Gleason, J. Im, Forest biomass estimation from airborne LiDAR data using machine learning approaches, Remote Sens. Environ. 125 (2012) 80-91.

[7]

J.M. Montes, F. Technow, B.S. Dhillon, F. Mauch, A.E. Melchinger, High-throughput non-destructive biomass determination during early plant development in maize under field conditions, Field Crops Res. 121 (2011) 268-273.

[8]

R. Prasad, A. Pandey, K.P. Singh, V.P. Singh, R.K. Mishra, D. Singh, Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions, Adv. Space Res. 50 (2012) 363-370.

[9]

D.C. Wang, J.H. Wang, N. Jin, Q. Wang, C.J. Li, J.F. Huang, Y. Wang, F. Huang, ANN-based wheat biomass estimation using canopy hyperspectral vegetation indices, Trans. CSAE 24 (2008) 196-201 (in Chinese with English abstract).

[10]

J.G.P.W. Clevers, G.W.A.M. van der Heijden, S. Verzakov, M.E. Schaepman, Estimating grassland biomass using SVM band shaving of hyperspectral data, Photogramm. Eng. Remote. Sens. 73 (2007) 1141-1148.

[11]

X.L. Jin, W.Y. Diao, C.H. Xiao, F.Y. Wang, B. Chen, K.R. Wang, S.K. Li, Estimation of wheat agronomic parameters using new spectral indices, PLoS One 8 (2013) e72736.

[12]

R. Jhonnerie, V.P. Siregar, B. Nababan, L.B. Prasetyo, S. Wouthuyzen, Random forest classification for mangrove land cover mapping using Landsat5 TM and ALOS PALSAR imageries, Procedia Environ. Sci. 24 (2015) 215-221.

[13]

I. Nitze, B. Barrett, F. Cawkwell, Temporal optimization of image acquisition for land cover classification with random forest and MODIS time-series, Int. J. Appl. Earth Obs. Geoinf. 34 (2015) 136-146.

[14]

P.O. Gislason, J.A. Benediktsson, J.R. Sveinsson, Random forests for land cover classification, Pattern Recogn. Lett. 27 (2006) 294-300.

[15]

A. Puissant, S. Rougier, A. Stumpf, Object-oriented mapping of urban trees using random forest classifiers, Int. J. Appl. Earth Obs. Geoinf. 26 (2014) 235-245.

[16]

D.J. Booker, T.H. Snelder, Comparing methods for estimating flow duration curves at ungauged sites, J. Hydrol. 434 (2012) 78-84.

[17]

M.L. Liu, X.N. Liu, D. Liu, C. Ding, J.L. Jiang, Multivariable integration method for estimating sea surface salinity in coastal waters from in situ data and remotely sensed data using random forest algorithm, Comput. Geosci. 75 (2015) 44-56.

[18]

O. Mutanga, E. Adam, M. Azong Cho, High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm, Int. J. Appl. Earth Obs. Geoinf. 18 (2014) 399-406.

[19]
J.W. Rouse, R.H. Haas, J.A. Schell, Monitoring the Vernal Advancement of Retrogradation (Green Wave Effect) of Natural Vegetation, Remote Sensing Center, Texas A&M University College Station, USA, 1974.
[20]

A.R. Huete, A soil vegetation adjusted index (SAVI), Remote Sens. Environ. 25 (1998) 295-309.

[21]

G. Rondeaux, M. Steven, F. Baret, Optimization of soil-adjusted vegetation indices, Remote Sens. Environ. 55 (1996) 95-107.

[22]
T.D. Schleicher, W.C. Bausch, J.A. Delgado, P.D. Ayers, Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management, in: 2001 ASABE Annual International Meeting, St-Joseph, MI, USA. ASABE Paper No. 01–11151, 2001.
[23]

A.A. Gitelson, Y. Kaufman, M.N. Merzlyak, Use of a green channel in remote sensing of global vegetation from EOS-MODIS, Remote Sens. Environ. 58 (1996) 289-298.

[24]

J. Penuelas, I. Filella, J.A. Gamon, Assessment of photosynthetic radiation-use efficiency with spectral reflectance, New Phytol. 131 (1995) 291-296.

[25]

M.N. Merzlyak, A.A. Gitelson, O.B. Chivkunova, Y.R. Rakitin, Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening, Physiol. Plant. 106 (1999) 135-141.

[26]

F. Baret, G. Guyot, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens. Environ. 35 (1991) 161-173.

[27]

A.A. Gitelson, Y. Zur, O.B. Chivkunova, M.N. Merzlyak, Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochem. Photobiol. 75 (2002) 272-281.

[28]

H.Q. Liu, A.R. Huete, A feedback based modification of the NDVI to minimize canopy background and atmospheric noise, IEEE Trans. Geosci. Remote Sens. 33 (1995) 457-465.

[29]

J.M. Chen, Evaluation of vegetation indices and modified simple ratio for boreal applications, Can. J. Remote. Sens. 22 (1996) 229-242.

[30]

N.S. Goel, W.H. Qin, Influences of canopy architecture on relationships between various vegetation indexes and LAI and FPAR: a computer simulation, Remote Sens. Environ. 10 (1994) 309-347.

[31]

K. Wang, Z.Q. Shen, R.C. Wang, Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy, J. Zhejiang Agric. Univ. 24 (1998) 93-97.

[32]

N.H. Broge, E. Leblanc, Comparing prediction power and stability of broad band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sens. Environ. 76 (2000) 156-172.

[33]

D. Haboudane, J.R. Miller, E. Pattey, P.J. Zarco-Tejada, I.B. Strachan, Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture, Remote Sens. Environ. 90 (2004) 337-352.

[34]
L. Breiman, J. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, The Wadsworth Statistics/Probability Series, Wadsworth, Belmont, CA, 1984.
[35]
J.R. Quinlan, C4.5 Programs for Machine Learning, Morgan Kaurmann, San Mateo, CA, 1993.
[36]

V. Rodriguez-Galiano, M.P. Mendes, M.J. Garcia-Soldado, M. Chica-Olmo, L. Ribeiro, Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain), Sci. Total Environ. 476–477 (2014) 189-206.

[37]

A. Prasad, L. Iverson, A. Liaw, Newer classification and regression tree techniques bagging and random forests for ecological prediction, Ecosystems 9 (2006) 181-199.

[38]

A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao, L.G. Ferreira, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ. 83 (2002) 195-213.

[39]

F. Li, Y.X. Miao, S.D. Hennig, M.L. Gnyp, X.P. Chen, L.L. Jia, G. Bareth, Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages, Precis. Agric. 11 (2010) 335-357.

[40]

F. Li, B. Mistele, Y.C. Hu, X.L. Yue, Y.X. Miao, X.P. Chen, Z.L. Cui, Q.F. Meng, U. Schmidthalter, Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany, Field Crops Res. 138 (2012) 21-32.

[41]

J.L. Hatfield, J.H. Prueger, Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices, Remote Sens. 2 (2010) 562-578.

[42]

V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[43]
S.O. Haykin, Neural Networks: A Comprehensive Foundation, second ed. Prentice Hall, 1999.
[44]

J. Verrelst, J. Muñoz, L. Alonso, J. Delegido, J.P. Rivera, G. Camps-Valls, J. Moreno, Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3, Remote Sens. Environ. 118 (2012) 127-139.

[45]
F. Baret, S. Buis, Estimating canopy characteristics from remote sensing observations: review of methods and associated problems, in: S. Liang (Ed.), Advances in Land Remote Sensing: System, Modeling, Inversion and Application, Springer, The Netherlands 2008, pp. 173–201.
[46]

R.D. Cutler, T.C. Edwards, K.H. Beard, K.T. Cutler, H.J. Gibson, J.J. Lawler, Random forests for classification in ecology, Ecology 88 (2007) 2783-2792.

[47]

S. Fukuda, E. Yasunaga, M. Nagle, K. Yuge, V. Sardsud, W. Spreer, J. Müller, Modelling the relationship between peel colour and the quality of fresh mango fruit using random forests, J. Food Eng. 131 (2014) 7-17.

[48]

J. Bendig, K. Yu, H. Aasen, A. Bolten, S. Bennertz, J. Broscheit, M.L. Gnyp, G. Bareth, Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley, Int. J. Appl. Earth Obs. Geoinf. 39 (2015) 79-87.

[49]

K. Prabhakara, W.D. Hively, G.W. McCarty, Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in maryland, United States, Int. J. Appl. Earth Obs. Geoinf. 39 (2015) 88-102.

[50]

X.L. Jin, K.R. Wang, C.H. Xiao, W.Y. Diao, F.Y. Wang, B. Chen, S.K. Li, Comparison of two methods for estimation of leaf total chlorophyll content using remote sensing in wheat, Field Crops Res. 135 (2012) 24-29.

[51]

P.F.C. Monteiro, R.A. Filho, A.C. Xavier, R.O.C. Monteiro, Assessing biophysical variable parameters of bean crops with hyperspectral measurements, Sci. Agric. 69 (2012) 87-94.

[52]

P.M. Hansen, J.K. Schjoerring, Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression, Remote Sens. Environ. 86 (2003) 542-553.

[53]

X.C. Li, X.G. Xu, Y.S. Bao, W.J. Huang, J.H. Luo, Y.Y. Dong, X.Y. Song, J.H. Wang, Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method, Sci. Agric. Sin. 45 (2012) 3486-3496 (in Chinese with English abstract).

[54]

E. Boegh, R. Houborg, J. Bienkowski, C.F. Braban, T. Dalgaard, N. van Dijk, U. Dragosits, E. Holmes, Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop and grasslands in five European landscapes, Biogeosciences 10 (2013) 6279-6307.

[55]

J.U.H. Eitel, T.S. Magney, L.A. Vierling, T.T. Brown, D.R. Huggins, LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status, Field Crops Res. 159 (2014) 21-32.

The Crop Journal
Pages 212-219
Cite this article:
Wang L, Zhou X, Zhu X, et al. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. The Crop Journal, 2016, 4(3): 212-219. https://doi.org/10.1016/j.cj.2016.01.008

269

Views

4

Downloads

429

Crossref

N/A

Web of Science

442

Scopus

14

CSCD

Altmetrics

Received: 15 October 2015
Revised: 29 January 2016
Accepted: 15 March 2016
Published: 30 March 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return