AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

QTL underlying iron and zinc toxicity tolerances at seedling stage revealed by two sets of reciprocal introgression populations of rice (Oryza sativa L.)

Huan Liua,1Aijaz Soomrob,1Yajun ZhucXianjin QiuaKai ChencTianqing ZhengbLongwei YangaDanying Xinga( )Jianlong Xub,c,d( )
Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
Shenzhen Institute of Breeding for Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

1 These authors contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Iron and zinc are two trace elements that are essential for rice. But they are toxic at higher concentrations, leading to severe rice yield losses especially in acid soils and inland valleys. In this study, two reciprocal introgression line (IL) populations sharing the same parents were used with high-density SNP bin markers to identify QTL tolerant to iron and zinc toxicities. The results indicated that the japonica variety 02,428 had stronger tolerance to iron and zinc toxicities than the indica variety Minghui 63. Nine and ten QTL contributing to iron and zinc toxicity tolerances, respectively, were identified in the two IL populations. The favorable alleles of most QTL came from 02,428. Among them, qFRRDW2, qZRRDW3, and qFRSDW11 appeared to be independent of genetic background. The region C11S49–C11S60 on chromosome 11 harbored QTL affecting multiple iron and zinc toxicity tolerance-related traits, indicating partial genetic overlap between the two toxicity tolerances. Our results provide essential information and materials for developing excellent rice cultivars with iron and/or zinc tolerance by marker-assisted selection (MAS).

References

[1]

L.E. Williams, R.F. Mills, P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants, Trends Plant Sci. 10 (2005) 491-502.

[2]

Z.L. He, X.E. Yang, P.J. Stoffella, Trace elements in agroecosystems and impacts on the environment, J. Trace Elem. Med. Biol. 19 (2005) 125-140.

[3]

P.J. White, P.H. Brown, Plant nutrition for sustainable development and global health, Ann. Bot. 105 (2010) 1073-1080.

[4]

A. Audebert, M. Fofana, Rice yield gap due to iron toxicity in West Africa, J. Agron. Crop Sci. 195 (2009) 66-76.

[5]

M. Becker, F. Asch, Iron toxicity in rice—conditions and management concepts, Plant Nutr. Soil Sci. 168 (2005) 558-573.

[6]

N.K. Fageria, N.A. Rabelo, Tolerance of rice cultivars to iron toxicity, J. Plant Nutr. 10 (2008) 653-661.

[7]

A. Audebert, K.L. Sahrawat, Mechanisms for iron toxicity tolerance in lowland rice, J. Plant Nutr. 23 (2000) 1877-1885.

[8]
H. Obata, Micro essential elements, in: T. Matsuo, K.Kumazawa, R. Ishii, K. Ishihara, H. Hirata (Eds.), Science ofRice Plant, Vol. 2: Physiology, Food and Agriculture PolicyResearch Center, Tokyo, Japan 1995, pp. 402–419.
[9]

Y.J. Dong, T.F. Ogawa, D.Z. Lin, H.J. Koh, H. Kamiunten, M. Matsuo, S.H. Cheng, Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.), Field Crops Res. 95 (2006) 420-425.

[10]

J.L. Wan, H.Q. Zhai, J.M. Wan, H. Yasui, A. Yoshimura, Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines, Acta Genet. Sin. 30 (2003) 893-898.

[11]

J.L. Wan, H.Q. Zhai, J.M. Wan, H. Ikehashi, Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L., Euphytica 131 (2003) 201-206.

[12]

A. Shimizu, C.Q. Guerta, G.B. Gregorio, S. Kawasaki, H. Ikehashi, QTLs for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity, Plant Soil 275 (2005) 57-66.

[13]

I. Dufey, P. Hakizimana, X. Draye, S. Lutts, P. Bertin, QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice, Euphytica 167 (2009) 143-160.

[14]

G. Onaga, J. Egdane, R. Edema, I. Abdelbagi, Morphological and genetic diversity analysis of rice accessions (Oryza sativa L.) differing in iron toxicity tolerance, J. Crop Sci. Biotechnol. 16 (2013) 53-62.

[15]

J. Zhang, A.S. Aijaz, L. Chai, Y.R. Cui, X.Q. Wang, T.Q. Zheng, J.L. Xu, Z.K. Li, Mapping of QTL for iron and zinc toxicity tolerance at seedling stage using a set of reciprocal introgression lines of rice, Acta Agron. Sin. 39 (2013) 1754-1765 (in Chinese with English abstract).

[16]

L.B. Wu, M.Y. Shhadi, G. Gregorio, E. Matthus, M. Becker, M. Frei, Genetic and physiological analysis of tolerance to acute iron toxicity in rice, Rice 7 (2014) 8.

[17]

A. Song, P. Li, Z.J. Li, F.L. Fan, M. Nikolic, Y.C. Liang, The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice, Plant Soil 344 (2011) 319-333.

[18]

P. Wu, A. Luo, J. Zhu, J. Yang, N. Huang, D. Senadhira, Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity, Plant Soil 196 (1997) 317-320.

[19]

I. Dufey, X. Draye, S. Lutts, M. Lorieux, C. Martinez, P. Bertin, Novel QTLs in an interspecific backcross Oryza sativa×Oryza glaberrima for resistance to iron toxicity in rice, Euphytica 204 (2015) 609-625.

[20]

E. Matthus, L.B. Wu, Y. Ueda, S. Höller, M. Becker, M. Frei, Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.), Theor. Appl. Genet. 128 (2015) 2085-2098.

[21]

H.X. Lan, Z.F. Wang, Q.H. Wang, M.M. Wang, Y.M. Bao, J. Huang, H.S. Zhang, Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.), Mol. Biol. Rep. 40 (2013) 1201-1210.

[22]

S. Ruengphayak, V. Ruanjaichon, C. Saensuk, S. Phromphan, S. Tragoonrung, R. Kongkachuichai, A. Vanavichit, Forward screening for seedling tolerance to Fe toxicity reveals a polymorphic mutation in ferric chelate reductase in rice, Rice 8 (2015) 3.

[23]

S.D. Tanksley, J.C. Nelson, Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines, Theor. Appl. Genet. 92 (1996) 191-203.

[24]

J. Ali, J.L. Xu, A.M. Ismail, B.Y. Fu, C.H.M. Vijayakumar, Y.M. Gao, J. Domingo, R. Maghirang, S.B. Yu, G. Gregorio, S. Yanaghihara, M. Cohen, B. Carmen, D. Mackill, Z.K. Li, Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program, Field Crops Res. 97 (2006) 66-76.

[25]

Y.X. He, T.Q. Zheng, X.B. Hao, L.F. Wang, Y.M. Gao, Z.T. Hua, H.Q. Zhai, J.L. Xu, Z.J. Xu, L.H. Zhu, Z.K. Li, Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme, Plant Breed. 129 (2010) 167-175.

[26]

Z.K. Li, B.Y. Fu, Y.M. Gao, J.L. Xu, J. Ali, H.R. Lafitte, Y.Z. Jiang, J.D. Rey, C.H.M. Vijayakumar, R. Maghirang, T.Q. Zheng, L.H. Zhu, Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.), Plant Mol. Biol. 59 (2005) 33-52.

[27]

F. Zhang, H.Q. Zhai, A.H. Paterson, J.L. Xu, Y.M. Gao, T.Q. Zheng, R.L. Wu, B.Y. Fu, J. Ali, Z.K. Li, Dissecting genetic networks underlying complex phenotypes: the theoretical framework, PLoS One 6 (2011) e14541.

[28]

J.L. Xu, H.R. Lafitte, Y.M. Gao, B.Y. Fu, R. Torres, Z.K. Li, QTLs for drought escape and tolerance identified in a set of random introgression lines of rice, Theor. Appl. Genet. 111 (2005) 1642-1650.

[29]

Y. Wang, J.P. Zang, Y. Sun, J. Ali, J.L. Xu, Z.K. Li, Identification of genetic overlaps for salt and drought tolerance using simple sequence repeat markers on an advanced backcross population in rice, Crop Sci. 52 (2012) 1767-1775.

[30]

Y.J. Zhu, K. Chen, X.F. Mi, T.X. Chen, J. Ali, G.Y. Ye, J.L. Xu, Z.K. Li, Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice, PLoS One 10 (2015) e0145704.

[31]

F.X. Wu, Q.H. Cai, Y.S. Zhu, J.F. Zhang, H.A. Xie, Application of indica restorer line, Minghui 63, for rice hybridization, Fujian J. Agric. Sci. 26 (2011) 1101-1112 (in Chinese with English abstract).

[32]

H.B. Li, A wide-compatibility rice germplasm-02428, Crop Variety Resour. (4) (1989) 42 (in Chinese).

[33]
S. Yoshida, D.A. Forno, J.H. Cock, K.A. Gomez, LaboratoryManual for Physiological Studies of Rice, third ed.International Rice Research Institute, Manila, Philippines, 1976.
[34]

X.H. Huang, Q. Feng, Q. Qian, Q. Zhao, L. Wang, A.H. Wang, J.P. Guan, D.L. Fan, Q.J. Weng, T. Huang, G.J. Dong, T. Sang, B. Han, High-throughput genotyping by whole-genome resequencing, Genome Res. 19 (2009) 1068-1076.

[35]

W. Chen, H.D. Chen, T.Q. Zheng, R.B. Yu, W.B. Terzaghi, Z.K. Li, X.W. Deng, J.L. Xu, H. He, Highly efficient genotyping of rice biparental populations by GoldenGate assays based on parental resequencing, Theor. Appl. Genet. 127 (2014) 297-307.

[36]

L. Meng, H.H. Li, L.Y. Zhang, J.K. Wang, QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations, Crop J. 3 (2015) 269-283.

[37]

M.R. Miller, J.P. Dunham, A. Amores, W.A. Cresko, E.A. Johnson, Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers, Genome Res. 17 (2007) 240-248.

[38]

H.H. Li, G.Y. Ye, J.K. Wang, Modified algorithm for the improvement of composite interval mapping, Genetics 175 (2007) 361-374.

[39]
Gramene, Gramene Database (Version No. 33), Cold SpringHarbor Laboratory, and Cornell University, Ithaca, New York, 2011.
[40]

C.F. Zhao, L.H. Zhou, D. Ding, Y.D. Zhang, Q.Y. Zhao, X. Yu, Z. Zhu, T. Chen, S. Yao, C.L. Wang, Mapping of quantitative trait loci associated with ferrous iron toxicity tolerance at seedling stage based on chromosome segment substitution line in rice, Jiangsu J. Agric. Sci. 29 (2013) 461-467 (in Chinese with English abstract).

[41]

R.S. Desikan, A.J. Schork, Y. Wang, A. Witoelar, M. Sharma, L.K. McEvoy, D. Holland, J.B. Brewer, C.H. Chen, W.K. Thompson, D. Harold, J. Williams, M.J. Owen, M.C.O. Donovan, M.A. Pericak-Vance, R. Mayeux, J.L. Haines, L.A. Farrer, G.D. Schellenberg, P. Heutink, A.B. Singleton, A. Brice, N.W. Wood, J. Hardy, M. Martinez, S.H. Choi, A. DeStefano, M.A. Ilram, J.C. Bis, A. Smith, A.L. Fitzpatrick, L. launer, C.V. Duijn, S. Seshadri, I.D. Ulstein, D. Aarsland, T. Fladby, S. Djurovic, B.T. Hyman, J. Snaedal, H. Stefansson, K. Stefansson, T. Gasser, Q.A. Andreassen, A.M. Dale, IPDGC Investigators, Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus, Mol. Psychiatr. 20 (2015) 1588-1595.

[42]

M. Trujillo, M. Troeger, R.E. Niks, K.H. Kogel, R. Huckelhoven, Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis, Mol. Plant Pathol. 5 (2004) 389-396.

[43]

L.Z. Xiong, Y.N. Yang, Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase, Plant Cell 15 (2003) 745-759.

[44]

J.F. Ma, R.F. Shen, Z.Q. Zhao, M. Wissuwa, Y. Takeuchi, T. Ebitani, M. Yano, Response of rice to Al stress and identification of quantitative trait loci for Al tolerance, Plant Cell Physiol. 43 (2002) 652-659.

[45]

X.Y. Wang, P. Wu, Y.R. Wu, X.L. Yan, Molecular marker analysis of manganese toxicity tolerance in rice under greenhouse conditions, Plant Soil 238 (2002) 227-233.

[46]

J.L. Wan, H.Q. Zhai, J.M. Wan, H. Yasui, A. Yoshimura, Detection and analysis of QTLs associated with resistance to ferrous iron toxicity tolerance in rice (Oryza sativa L.), using recombinant inbred lines, Acta Agron. Sin. 30 (2004) 329-333 (in Chinese with English abstract).

[47]

H. Miyadate, S. Adachi, A. Hiraizumi, K. Tezuka, N. Nakazawa, T. Kawamoto, K. Katou, I. Kodama, K. Sakurai, H. Takahashi, N. Satoh-Nagasawa, A. Watanabe, T. Fujimura, H. Akagi, OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles, New Phytol. 189 (2011) 190-199.

[48]

A. Sasaki, N. Yamaji, J.F. Ma, Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice, J. Exp. Bot. 65 (2014) 6013-6021.

[49]

M.J. Kovach, M.T. Sweeney, S.R. McCouch, New insights into the history of rice domestication, Trends Genet. 23 (2007) 578-587.

The Crop Journal
Pages 280-289
Cite this article:
Liu H, Soomro A, Zhu Y, et al. QTL underlying iron and zinc toxicity tolerances at seedling stage revealed by two sets of reciprocal introgression populations of rice (Oryza sativa L.). The Crop Journal, 2016, 4(4): 280-289. https://doi.org/10.1016/j.cj.2016.05.007

217

Views

3

Downloads

15

Crossref

N/A

Web of Science

21

Scopus

2

CSCD

Altmetrics

Received: 22 February 2016
Revised: 14 May 2016
Accepted: 06 June 2016
Published: 14 June 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return