AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (403.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Genetic mapping of quantitative trait loci in crops

Yang XuPengcheng LiZefeng YangChenwu Xu( )
Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou 225009, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists. Two complementary approaches for genetic mapping, linkage mapping and association mapping have led to successful dissection of complex traits in many crop species. Both of these methods detect quantitative trait loci (QTL) by identifying marker–trait associations, and the only fundamental difference between them is that between mapping populations, which directly determine mapping resolution and power. Based on this difference, we first summarize in this review the advances and limitations of family-based mapping and natural population-based mapping instead of linkage mapping and association mapping. We then describe statistical methods used for improving detection power and computational speed and outline emerging areas such as large-scale meta-analysis for genetic mapping in crops. In the era of next-generation sequencing, there has arisen an urgent need for proper population design, advanced statistical strategies, and precision phenotyping to fully exploit high-throughput genotyping.

References

[1]

A.H. Price, Believe it or not, QTLs are accurate!, Trends Plant Sci. 11 (2006) 213–216.

[2]

C.S. Zhu, M. Gore, E.S. Buckler, J.M. Yu, Status and prospects of association mapping in plants, Plant Genome 1 (2008) 5–20.

[3]

P. Donnelly, Progress and challenges in genome-wide association studies in humans, Nature 456 (2008) 728–731.

[4]

J.M. Thornsberry, M.M. Goodman, J. Doebley, S. Kresovich, D. Nielsen, E.S. Buckler, Dwarf8 polymorphisms associate with variation in flowering time, Nat. Genet. 28 (2001) 286–289.

[5]

K.Y. Zhao, M.J. Aranzana, S. Kim, C. Lister, C. Shindo, C.L. Tang, C. Toomajian, H.G. Zheng, C. Dean, P. Marjoram, An Arabidopsis example of association mapping in structured samples, PLoS Genet. 3 (2007), e4.

[6]

X.H. Huang, X.H. Wei, T. Sang, Q. Zhao, Q. Feng, Y. Zhao, C.Y. Li, C.R. Zhu, T.T. Lu, Z.W. Zhang, M. Li, D.L. Fan, Y.L. Guo, A.H. Wang, L. Wang, L.W. Deng, W.J. Li, Y.Q. Lu, Q.J. Weng, K.Y. Liu, T. Huang, T.Y. Zhou, Y.F. Jing, W. Li, Z. Lin, E.S. Buckler, Q. Qian, Q.F. Zhang, J.Y. L, B. Han, Genome-wide association studies of 14 agronomic traits in rice landraces, Nat. Genet. 42 (2010) 961–967.

[7]

H. Li, Z.Y. Peng, X.H. Yang, W.D. Wang, J.J. Fu, J.H. Wang, Y.J. Han, Y.C. Chai, T.T. Guo, N. Yang, J. Liu, M.L. Warburton, Y.B. Cheng, X.M. Hao, P. Zhang, J.Y. Zhao, Y.J. Liu, G.Y. Wang, J.S. Li, J.B. Yan, Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels, Nat. Genet. 45 (2013) 43–50.

[8]

F. Breseghello, M.E. Sorrells, Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars, Genetics 172 (2006) 1165–1177.

[9]

Z.K. Zhou, Y. Jiang, Z. Wang, Z.H. Gou, J. Lyu, W.Y. Li, Y.J. Yu, L.P. Shu, Y.J. Zhao, Y.M. Ma, C. Fang, Y.T. Shen, T.F. Liu, C.C. Li, Q. Li, M. Wu, M. Wang, Y.S. Wu, Y. Dong, W.T. Wan, X. Wang, Z.L. Ding, Y.D. Gao, H. Xiang, B.G. Zhu, S.H. Lee, W. Wang, Z.X. Tian, Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean, Nat. Biotechnol. 33 (2015) 408–414.

[10]

H. Wang, K.P. Smith, E. Combs, T. Blake, R.D. Horsley, G.J. Muehlbauer, Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm, Theor. Appl. Genet. 124 (2012) 111–124.

[11]

G.P. Morris, P. Ramu, S.P. Deshpande, C.T. Hash, T. Shah, H.D. Upadhyaya, O. Riera-Lizarazu, P.J. Brown, C.B. Acharya, S.E. Mitchell, Population genomic and genome-wide association studies of agroclimatic traits in sorghum, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 453–458.

[12]

J.G. Uitdewilligen, A.M.A. Wolters, B. Bjorn, T.J. Borm, R.G. Visser, H.J. van Eck, A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato, PLoS One 8 (2013), e62355.

[13]

C. Sauvage, V. Segura, G. Bauchet, R. Stevens, P.T. Do, Z. Nikoloski, A.R. Fernie, M. Causse, Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits, Plant Physiol. 165 (2014) 1120–1132.

[14]

S. Myles, J. Peiffer, P.J. Brown, E.S. Ersoz, Z. Zhang, D.E. Costich, E.S. Buckler, Association mapping: critical considerations shift from genotyping to experimental design, Plant Cell 21 (2009) 2194–2202.

[15]

P.L. Morrell, E.S. Buckler, J. Ross-Ibarra, Crop genomics: advances and applications, Nat. Rev. Genet. 13 (2012) 85–96.

[16]

J.M. Yu, J.B. Holland, M.D. McMullen, E.S. Buckler, Genetic design and statistical power of nested association mapping in maize, Genetics 178 (2008) 539–551.

[17]

K.L. Kump, P.J. Bradbury, R.J. Wisser, E.S. Buckler, A.R. Belcher, M.A. Oropeza-Rosas, J.C. Zwonitzer, S. Kresovich, M.D. McMullen, D. Ware, Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population, Nat. Genet. 43 (2011) 163–168.

[18]

J.A. Poland, P.J. Bradbury, E.S. Buckler, R.J. Nelson, Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 6893–6898.

[19]

F. Tian, P.J. Bradbury, P.J. Brown, H. Hung, Q. Sun, S. Flint-Garcia, T.R. Rocheford, M.D. McMullen, J.B. Holland, E.S. Buckler, Genome-wide association study of leaf architecture in the maize nested association mapping population, Nat. Genet. 43 (2011) 159–162.

[20]

D.W. Threadgill, K.W. Hunter, R.W. Williams, Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort, Mamm. Genome 13 (2002) 175–178.

[21]

P.X. Kover, W. Valdar, J. Trakalo, N. Scarcelli, I.M. Ehrenreich, M.D. Purugganan, C. Durrant, R. Mott, A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana, PLoS Genet. 5 (2009), e1000551.

[22]

B.E. Huang, A.W. George, K.L. Forrest, A. Kilian, M.J. Hayden, M.K. Morell, C.R. Cavanagh, A multiparent advanced generation inter-cross population for genetic analysis in wheat, Plant Biotechnol. J. 10 (2012) 826–839.

[23]

N. Bandillo, C. Raghavan, P.A. Muyco, M.A.L. Sevilla, I.T. Lobina, C.J. Dilla-Ermita, C.W. Tung, S. McCouch, M. Thomson, R. Mauleon, Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding, Rice 6 (2013) 11.

[24]

Z.B. Zeng, Precision mapping of quantitative trait loci, Genetics 136 (1994) 1457–1468.

[25]

I.J. Mackay, P. Bansept-Basler, T. Barber, A.R. Bentley, J. Cockram, N. Gosman, A.J. Greenland, R. Horsnell, R. Howells, D.M. O'Sullivan, An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation, G3-Genes Genom. Genet. 4 (2014) 1603–1610.

[26]

W. Sannemann, B.E. Huang, B. Mathew, J. Léon, Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept, Mol. Breed. 35 (2015) 1–16.

[27]

L. Pascual, N. Desplat, B.E. Huang, A. Desgroux, L. Bruguier, J.P. Bouchet, Q.H. Le, B. Chauchard, P. Verschave, M. Causse, Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era, Plant Biotechnol. J. 13 (2015) 565–577.

[28]

E.S. Buckler, J.B. Holland, P.J. Bradbury, C.B. Acharya, P.J. Brown, C. Browne, E. Ersoz, S. Flint-Garcia, A. Garcia, J.C. Glaubitz, The genetic architecture of maize flowering time, Science 325 (2009) 714–718.

[29]

H.H. Li, P. Bradbury, E. Ersoz, E.S. Buckler, J.K. Wang, Joint QTL linkage mapping for multiple-cross mating design sharing one common parent, PLoS One 6 (2011), e17573.

[30]

A.J. Garris, S.R. McCouch, S. Kresovich, Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.), Genetics 165 (2003) 759–769.

[31]

M.I. Tenaillon, M.C. Sawkins, A.D. Long, R.L. Gaut, J.F. Doebley, B.S. Gaut, Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.), Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 9161–9166.

[32]

D.L. Remington, J.M. Thornsberry, Y. Matsuoka, L.M. Wilson, S.R. Whitt, J. Doebley, S. Kresovich, M.M. Goodman, E.S. Buckler, Structure of linkage disequilibrium and phenotypic associations in the maize genome, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 11479–11484.

[33]

J.B. Yan, T. Shah, M.L. Warburton, E.S. Buckler, M.D. McMullen, J. Crouch, Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers, PLoS One 4 (2009), e8451.

[34]

J.M. Yu, G. Pressoir, W.H. Briggs, I.V. Bi, M. Yamasaki, J.F. Doebley, M.D. McMullen, B.S. Gaut, D.M. Nielsen, J.B. Holland, A unified mixed-model method for association mapping that accounts for multiple levels of relatedness, Nat. Genet. 38 (2006) 203–208.

[35]

B. Devlin, K. Roeder, Genomic control for association studies, Biometrics 55 (1999) 997–1004.

[36]

J.K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using multilocus genotype data, Genetics 155 (2000) 945–959.

[37]

A.L. Price, N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick, D. Reich, Principal components analysis corrects for stratification in genome-wide association studies, Nat. Genet. 38 (2006) 904–909.

[38]

E.S. Lander, D. Botstein, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121 (1989) 185–199.

[39]

C.S. Haley, S.A. Knott, A simple regression method for mapping quantitative trait loci in line crosses using flanking markers, Heredity 69 (1992) 315–324.

[40]

Z.B. Zeng, Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 10972–10976.

[41]

H.H. Li, G.Y. Ye, J.K. Wang, A modified algorithm for the improvement of composite interval mapping, Genetics 175 (2007) 361–374.

[42]

C.H. Kao, Z.B. Zeng, R.D. Teasdale, Multiple interval mapping for quantitative trait loci, Genetics 152 (1999) 1203–1216.

[43]

S.Z. Xu, Mapping quantitative trait loci using four-way crosses, Genet. Res. 68 (1996) 175–181.

[44]

S.Z. Xu, Mapping quantitative trait loci using multiple families of line crosses, Genetics 148 (1998) 517–524.

[45]

S.Z. Xu, Iteratively reweighted least squares mapping of quantitative trait loci, Behav. Genet. 28 (1998) 341–355.

[46]

M.F. Jourjon, S. Jasson, J. Marcel, B. Ngom, B. Mangin, MCQTL: multi-allelic QTL mapping in multi-cross design, Bioinformatics 21 (2005) 128–130.

[47]

R. Mott, C.J. Talbot, M.G. Turri, A.C. Collins, J. Flint, A method for fine mapping quantitative trait loci in outbred animal stocks, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 12649–12654.

[48]

B.E. Huang, A.W. George, R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines, Bioinformatics 27 (2011) 727–729.

[49]

A.P. Verbyla, J.D. Taylor, K.L. Verbyla, RWGAIM: an efficient high-dimensional random whole genome average (QTL) interval mapping approach, Genet. Res. 94 (2012) 291–306.

[50]

A.P. Verbyla, A.W. George, C.R. Cavanagh, K.L. Verbyla, Whole-genome QTL analysis for MAGIC, Theor. Appl. Genet. 127 (2014) 1753–1770.

[51]

J.L. Wei, S.Z. Xu, A random model approach to QTL mapping in multi-parent advanced generation inter-cross (MAGIC) populations, Genetics 202 (2016) 471–486.

[52]

H.M. Kang, N.A. Zaitlen, C.M. Wade, A. Kirby, D. Heckerman, M.J. Daly, E. Eskin, Efficient control of population structure in model organism association mapping, Genetics 178 (2008) 1709–1723.

[53]

X. Zhou, M. Stephens, Genome-wide efficient mixed-model analysis for association studies, Nat. Genet. 44 (2012) 821–824.

[54]

C. Lippert, J. Listgarten, Y. Liu, C.M. Kadie, R.I. Davidson, D. Heckerman, FaST linear mixed models for genome-wide association studies, Nat. Methods 8 (2011) 833–835.

[55]

H.M. Kang, J.H. Sul, S.K. Service, N.A. Zaitlen, S.Y. Kong, N.B. Freimer, C. Sabatti, E. Eskin, Variance component model to account for sample structure in genome-wide association studies, Nat. Genet. 42 (2010) 348–354.

[56]

Z.W. Zhang, E. Ersoz, C.Q. Lai, R.J. Todhunter, H.K. Tiwari, M.A. Gore, P.J. Bradbury, J.M. Yu, D.K. Arnett, J.M. Ordovas, Mixed linear model approach adapted for genome-wide association studies, Nat. Genet. 42 (2010) 355–360.

[57]

J. Listgarten, C. Lippert, C.M. Kadie, R.I. Davidson, E. Eskin, D. Heckerman, Improved linear mixed models for genome-wide association studies, Nat. Methods 9 (2012) 525–526.

[58]

Q.S. Wang, F. Tian, Y.C. Pan, E.S. Buckler, Z.W. Zhang, A SUPER powerful method for genome wide association study, PLoS One 9 (2014), e107684.

[59]

P.R. Loh, G. Tucker, B.K. Bulik-Sullivan, B.J. Vilhjalmsson, H.K. Finucane, R.M. Salem, D.I. Chasman, P.M. Ridker, B.M. Neale, B. Berger, Efficient Bayesian mixed-model analysis increases association power in large cohorts, Nat. Genet. 47 (2015) 284–290.

[60]

S.B. Wang, J.Y. Feng, W.L. Ren, B. Huang, L. Zhou, Y.J. Wen, J. Zhang, J.M. Dunwell, S. Xu, Y.M. Zhang, Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology, Sci. Rep. 6 (2016) 19444.

[61]

L.C. Kwee, D.W. Liu, X.H. Lin, D. Ghosh, M.P. Epstein, A powerful and flexible multilocus association test for quantitative traits, Am. J. Hum. Genet. 82 (2008) 386–397.

[62]

Z. Liu, Y.Y. Shen, J. Ott, Multilocus association mapping using generalized ridge logistic regression, BMC Bioinf. 12 (2011) 384.

[63]

V. Segura, B.J. Vilhjálmsson, A. Platt, A. Korte, Ü. Seren, Q. Long, M. Nordborg, An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations, Nat. Genet. 44 (2012) 825–830.

[64]

B. Rakitsch, C. Lippert, O. Stegle, K. Borgwardt, A Lasso multi-marker mixed model for association mapping with population structure correction, Bioinformatics 29 (2013) 206–214.

[65]

X. Zhou, P. Carbonetto, M. Stephens, Polygenic modeling with Bayesian sparse linear mixed models, PLoS Genet. 9 (2013), e1003264.

[66]

A. Korte, B.J. Vilhjálmsson, V. Segura, A. Platt, Q. Long, M. Nordborg, A mixed-model approach for genome-wide association studies of correlated traits in structured populations, Nat. Genet. 44 (2012) 1066–1071.

[67]

C. Lippert, F.P. Casale, B. Rakitsch, O. Stegle, LIMIX: genetic analysis of multiple traits, BioRxiv 003905 (2014).

[68]

S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 65–70 (1979).

[69]

G.A. Churchill, R.W. Doerge, Empirical threshold values for quantitative trait mapping, Genetics 138 (1994) 963–971.

[70]

P.K. Gupta, P.L. Kulwal, V. Jaiswal, Association mapping in crop plants: opportunities and challenges, Adv. Genet. 85 (2013) 109–147.

[71]

S.Z. Xu, Genetic mapping and genomic selection using recombination breakpoint data, Genetics 195 (2013) 1103–1115.

[72]

J.F. He, X.Q. Zhao, A. Laroche, Z.X. Lu, H.K. Liu, Z.Q. Li, Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding, Front. Plant Sci. 5 (2014) 484.

[73]

R.J. Elshire, J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, S.E. Mitchell, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One 6 (2011), e19379.

[74]

M.C. Romay, M.J. Millard, J.C. Glaubitz, J.A. Peiffer, K.L. Swarts, T.M. Casstevens, R.J. Elshire, C.B. Acharya, S.E. Mitchell, S.A. Flint-Garcia, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biol. 14 (2013) R55.

[75]

H. Sonah, L. O'Donoughue, E. Cober, I. Rajcan, F. Belzile, Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean, Plant Biotechnol. J. 13 (2015) 211–221.

[76]

J. Spindel, M. Wright, C. Chen, J. Cobb, J. Gage, S. Harrington, M. Lorieux, N. Ahmadi, S. McCouch, Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations, Theor. Appl. Genet. 126 (2013) 2699–2716.

[77]

H. Liu, M. Bayer, A. Druka, J.R. Russell, C.A. Hackett, J. Poland, L. Ramsay, P.E. Hedley, R. Waugh, An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley, BMC Genomics 15 (2014) 1.

[78]

W. Pootakham, N. Jomchai, P. Ruang-areerate, J.R. Shearman, C. Sonthirod, D. Sangsrakru, S. Tragoonrung, S. Tangphatsornruang, Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS), Genomics 105 (2015) 288–295.

[79]

H.H. Li, P. Vikram, R.P. Singh, A. Kilian, J. Carling, J. Song, J.A. Burgueno-Ferreira, S. Bhavani, J. Huerta-Espino, T. Payne, A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits, BMC Genomics 16 (2015) 216.

[80]

J.C. Glaubitz, T.M. Casstevens, F. Lu, J. Harriman, R.J. Elshire, Q. Sun, E.S. Buckler, TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline, PLoS One 9 (2014), e90346.

[81]

F. Lu, A.E. Lipka, J. Glaubitz, R. Elshire, J.H. Cherney, M.D. Casler, E.S. Buckler, D.E. Costich, Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol, PLoS Genet. 9 (2013), e1003215.

[82]

K. Swarts, H. Li, J.A. Romero Navarro, D. An, M.C. Romay, S. Hearne, C. Acharya, J.C. Glaubitz, S. Mitchell, R.J. Elshire, Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants, Plant Genome 7 (2014) 3.

[83]

J.E. Rutkoski, J. Poland, J.L. Jannink, M.E. Sorrells, Imputation of unordered markers and the impact on genomic selection accuracy, G3-Genes Genom. Genet. 3 (2013) 427–439.

[84]

E.A. Edae, R.L. Bowden, J. Poland, Application of population sequencing (POPSEQ) for ordering and imputing genotyping-by-sequencing markers in hexaploid wheat, G3-Genes Genom. Genet. 5 (2015) 2547–2553.

[85]

X. Huang, B. Han, Natural variations and genome-wide association studies in crop plants, Annu. Rev. Plant Biol. 65 (2014) 531–551.

[86]

W.N. Yang, L.F. Duan, G.X. Chen, L.Z. Xiong, Q. Liu, Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies, Curr. Opin. Plant Biol. 16 (2013) 180–187.

[87]

R.T. Furbank, M. Tester, Phenomics–technologies to relieve the phenotyping bottleneck, Trends Plant Sci. 16 (2011) 635–644.

[88]

C. Zou, P.X. Wang, Y.B. Xu, Bulked sample analysis in genetics, genomics and crop improvement, Plant Biotechnol. J. (2016), http://dx.doi.org/10.1111/pbi.12559.

[89]

Y.P. Sun, J.K. Wang, J.H. Crouch, Y.B. Xu, Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement, Mol. Breed. 26 (2010) 493–511.

[90]

K. Forrest, V. Pujol, P. Bulli, M. Pumphrey, C. Wellings, S. Herrera-Foessel, J. Huerta-Espino, R. Singh, E. Lagudah, M. Hayden, Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach, Mol. Breed. 34 (2014) 2109–2118.

[91]

J.L. Yang, H.Y. Jiang, C.T. Yeh, J.M. Yu, J.A. Jeddeloh, D. Nettleton, P.S. Schnable, Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel, Plant J. 84 (2015) 587–596.

[92]

H. Takagi, M. Tamiru, A. Abe, K. Yoshida, A. Uemura, H. Yaegashi, T. Obara, K. Oikawa, H. Utsushi, E. Kanzaki, MutMap accelerates breeding of a salt-tolerant rice cultivar, Nat. Biotechnol. 33 (2015) 445–449.

[93]

H. Takagi, A. Uemura, H. Yaegashi, M. Tamiru, A. Abe, C. Mitsuoka, H. Utsushi, S. Natsume, H. Kanzaki, H. Matsumura, MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii, New Phytol. 200 (2013) 276–283.

[94]

B. Han, E. Eskin, Interpreting meta-analyses of genome-wide association studies, PLoS Genet. 8 (2012), e1002555.

[95]

T.B. Huedo-Medina, J. Sánchez-Meca, F. Marín-Martínez, J. Botella, Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 11 (2006) 193.

[96]

B. Han, E. Eskin, Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies, Am. J. Hum. Genet. 88 (2011) 586–598.

[97]

W.S. Bush, J.H. Moore, Genome-wide association studies, PLoS Comput. Biol. 8 (2012), e1002822.

[98]

E.Y. Kang, B. Han, N. Furlotte, J.W.J. Joo, D. Shih, R.C. Davis, A.J. Lusis, E. Eskin, Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice, PLoS Genet. 10 (2014), e1004022.

The Crop Journal
Pages 175-184
Cite this article:
Xu Y, Li P, Yang Z, et al. Genetic mapping of quantitative trait loci in crops. The Crop Journal, 2017, 5(2): 175-184. https://doi.org/10.1016/j.cj.2016.06.003

260

Views

1

Downloads

165

Crossref

N/A

Web of Science

153

Scopus

0

CSCD

Altmetrics

Received: 12 May 2016
Revised: 20 June 2016
Accepted: 11 July 2016
Published: 21 July 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return