AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (422.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Rapeseed research and production in China

Qiong HuWei HuaYan YinXuekun ZhangLijiang LiuJiaqin ShiYongguo ZhaoLu QinChang ChenHanzhong Wang( )
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Rapeseed (Brassica napus L.) is the largest oilseed crop in China and accounts for about 20% of world production. For the last 10years, the production, planting area, and yield of rapeseed have been stable, with improvement of seed quality and especially seed oil content. China is among the leading countries in rapeseed genomic research internationally, having jointly with other countries accomplished the whole genome sequencing of rapeseed and its two parental species, Brassica oleracea and Brassica rapa. Progress on functional genomics including the identification of QTL governing important agronomic traits such as yield, seed oil content, fertility regulation, disease and insect resistance, abiotic stress, nutrition use efficiency, and pod shattering resistance has been achieved. As a consequence, molecular markers have been developed and used in breeding programs. During 2005–2014, 215 rapeseed varieties were registered nationally, including 210 winter- and 5 spring-type varieties. Mechanization across the whole process of rapeseed production was investigated and operating instructions for all relevant techniques were published. Modern techniques for rapeseed field management such as high-density planting, controlled-release fertilizer, and biocontrol of disease and pests combined with precision tools such as drones have been developed and are being adopted in China. With the application of advanced breeding and production technologies, in the near future, the oil yield and quality of rapeseed varieties will be greatly increased, and more varieties with desirable traits, especially early maturation, high yield, high resistance to biotic and abiotic stress, and suitability for mechanized harvesting will be developed. Application of modern technologies on the mechanized management of rapeseed will greatly increase grower profit.

References

[1]

B. Chalhoub, F. Denoeud, S.Y. Liu, I.A.P. Parkin, H.B. Tang, X.Y. Wang, J. Chiquet, H. Belcram, C.B. Tong, B. Samans, M. Corréa, C. Da Silva, J. Just, C. Falentin, C.S. Koh, I. Le Clainche, M. Bernard, P. Bento, B. Noel, K. Labadie, A. Alberti, M. Charles, D. Arnaud, H. Guo, C. Daviaud, S. Alamery, K. Jabbari, M. Zhao, P.P. Edger, H. Chelaifa, D. Tack, G. Lassalle, I. Mestiri, N. Schnel, M.C. Le Paslier, G.Y. Fan, V. Renault, P.E. Bayer, A.A. Golicz, S. Manoli, T.H. Lee, V.H.D. Thi, S. Chalabi, Q. Hu, C.C. Fan, R. Tollenaere, Y.H. Lu, C. Battail, J.X. Shen, C.H.D. Sidebottom, X.F. Wang, A. Canaguier, A. Chauveau, A. Bérard, G. Deniot, M. Guan, Z.S. Liu, F.M. Sun, Y.P. Lim, E. Lyons, C.D. Town, I. Bancroft, X.W. Wang, J.L. Meng, J.X. Ma, J.C. Pires, G.J. King, D. Brunel, R. Delourme, M. Renard, J.M. Aury, K.L. Adams, J. Batley, R.J. Snowdon, J. Tost, D. Edwards, Y.M. Zhou, W. Hua, A.G. Sharpe, A.H. Paterson, C.Y. Guan, P. Wincker, Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome, Science 345 (2014) 950–953.

[2]

S.Y. Liu, Y.M. Liu, X.H. Yang, C.B. Tong, D. Edwards, I.A.P. Parkin, M.X. Zhao, J.X. Ma, J.Y. Yu, S.M. Huang, X.Y. Wang, J.Y. Wang, K. Lu, Z.Y. Fang, I. Bancroft, T.J. Yang, Q. Hu, X.F. Wang, Z. Yue, H.J. Li, L.F. Yang, J. Wu, Q. Zhou, W.X. Wang, G.J. King, J.C. Pires, C.X. Lu, Z.Y. Wu, P. Sampath, Z. Wang, H. Guo, S.K. Pan, L.M. Yang, J.M. Min, D. Zhang, D.C. Jin, W.S. Li, H. Belcram, J.X. Tu, M. Guan, C.K. Qi, D.Z. Du, J.N. Li, L.C. Jiang, J. Batley, A.G. Sharpe, B.S. Park, P. Ruperao, F. Cheng, N.E. Waminal, Y. Huang, C.H. Dong, L. Wang, J.P. Li, Z.Y. Hu, M. Zhuang, Y. Huang, J.Y. Huang, J.Q. Shi, D.S. Mei, J. Liu, T.H. Lee, J.P. Wang, H.Z. Jin, Z.Y. Li, X. Li, J.F. Zhang, L. Xiao, Y.M. Zhou, Z.S. Liu, X.Q. Liu, R. Qin, X. Tang, W.B. Liu, Y.P. Wang, Y.Y. Zhang, J. Lee, H.H. Kim, F. Denoeud, X. Xu, X.M. Liang, W. Hua, X.W. Wang, J. Wang, B. Chalhoub, A.H. Paterson, The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes, Nat. Commun. 5 (2014) 3930.

[3]

X.W. Wang, H.Z. Wang, J. Wang, R.F. Sun, J. Wu, S.Y. Liu, Y.Q. Bai, J.H. Mun, I. Bancroft, F. Cheng, S.W. Huang, X.X. Li, W. Hua, J.Y. Wang, X.Y. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B.H. Liu, B. Li, B. Liu, C.B. Tong, C. Song, C. Duran, C.F. Peng, C.Y. Geng, C. Koh, C.Y. Lin, D. Edwards, D.S. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H.B. Tang, H.P. Wang, H. Belcram, H.L. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H.Z. Jin, I.A.P. Parkin, J. Batley, J.S. Kim, J. Just, J.W. Li, J.H. Xu, J. Deng, J.A. Kim, J.P. Li, J.Y. Yu, J.L. Meng, J.P. Wang, J.M. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M.X. Zhao, M.N. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q.L. Cai, Q.F. Huang, R.Q. Li, S. Tabata, S.F. Cheng, S. Zhang, S.J. Zhang, S.M. Huang, S. Sato, S.L. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y.R. Li, Y.C. Du, Y.C. Liao, Y. Lim, Y. Narusaka, Y.P. Wang, Z.Y. Wang, Z.Y. Li, Z.W. Wang, Z.Y. Xiong, Z.H. Zhang, The genome of the mesopolyploid crop species Brassica rapa, Nat. Genet. 43 (2011) 1035–1039.

[4]

F. Li, B.Y. Chen, K. Xu, J.F. Wu, W.L. Song, I. Bancroft, A.L. Harper, M. Trick, S.Y. Liu, G.Z. Gao, N. Wang, G.X. Yan, J.W. Qiao, J. Li, H. Li, X. Xiao, T.Y. Zhang, X.M. Wu, Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.), DNA Res. 21 (2014) 355–367.

[5]

J. Liu, W. Hua, Z. Hu, H. Yang, L. Zhang, R. Li, L. Deng, X. Sun, X. Wang, H. Wang, Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed, Proc. Natl. Acad. Sci. U. S. A. 1 (2015) E5123-E5132.

[6]

S.P. Li, L. Chen, L.W. Zhang, X. Li, Y. Liu, Z.K. Wu, F.M. Dong, L.L. Wan, K.D. Liu, D.F. Hong, G.S. Yang, BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes, Plant Physiol. 169 (2015) 2744–2760.

[7]

Y.G. Xiao, Q.B. Sun, X.J. Kang, C.B. Chen, M. Ni, SHORT HYPOCOTYL UNDER BLUE1 or HAIKU2 mixepression alters canola and Arabidopsis seed development, New Phytol. 209 (2016) 636–649.

[8]

H.L. Tan, X.H. Yang, F.X. Zhang, X. Zheng, C.M. Qu, J.Y. Mu, F.Y. Fu, J.N. Li, R.Z. Guan, H.S. Zhang, G.D. Wang, J.R. Zuo, Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds, Plant Physiol. 156 (2010) 1577–1588.

[9]

J. Liu, W. Hua, G.M. Zhan, F. Wei, X.F. Wang, G.H. Liu, H.Z. Wang, Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus, Plant Physiol. Biochem. 48 (2010) 9–15.

[10]

W. Hua, R.J. Li, G.M. Zhan, J. Liu, J. Li, X.F. Wang, G.H. Liu, H.Z. Wang, Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis, Plant J. 69 (2012) 432–444.

[11]

J. Liu, W. Hua, H.L. Yang, T.T. Guo, X.C. Sun, X.F. Wang, G.H. Liu, H.Z. Wang, Effects of specific organs on seed oil accumulation in Brassica napus L, Plant Sci. 227 (2014) 60–68.

[12]

X.F. Wang, G.H. Liu, Q. Yang, W. Hua, J. Liu, H.Z. Wang, Genetic analysis on oil content in rapeseed (Brassica napus L.), Euphytica 173 (2010) 17–24.

[13]

J. Liu, W. Hua, H.L. Yang, G.M. Zhan, R.J. Li, L.B. Deng, X.F. Wang, G.H. Liu, H.Z. Wang, The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis, J. Exp. Bot. 63 (2012) 695–709.

[14]
W. Hao, Molecular Mechanism of Cytoplasmic Effects on Oil Content in Brassica napus, Ph.D. Dissertation of Chinese Academy of Agricultural Sciences, 2014.
[15]

B. Yi, F.Q. Zeng, S.L. Lei, Y.N. Chen, X.Q. Yao, Y. Zhu, J. Wen, J.X. Shen, C.Z. Ma, J.X. Tu, T.D. Fu, Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus, Plant J. 63 (2010) 925–938.

[16]

X.L. Dun, Z.F. Zhou, S.Q. Xia, J. Wen, B. Yi, J.X. Shen, C.Z. Ma, J.X. Tu, T.D. Fu, BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus, Plant J. 68 (2011) 532–545.

[17]

X.L. Dun, W.H. Shen, K.N. Hu, Z.F. Zhou, S.Q. Xia, J. Wen, B. Yi, J.X. Shen, C.Z. Ma, J.X. Tu, T.D. Fu, U. Lagercrantz, Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages, Plant Physiol. 166 (2014) 1403–1419.

[18]

B. Zhang, C. Liu, Y.Q. Wang, X. Yao, F. Wang, J.S. Wu, G.J. King, K.D. Liu, Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species, New Phytol. 206 (2015) 1513–1526.

[19]

C.Y. Zhang, W. Zhang, G.D. Ren, D.L. Li, R.E. Cahoon, M. Chen, Y.M. Zhou, B. Yu, E.B. Cahoon, Chlorophyll synthase under epigenetic surveillance is critical for vitamin E synthesis, and altered expression affects tocopherol levels in Arabidopsis, Plant Physiol. 168 (2015) 1503–1511.

[20]

H.Z. Wang, S. Wang, P.P. Kuang, Z.F. Lin, J. Cheng, Y.B. Zhao, C.Y. Li, C.C. Yu, DNA molecular marker technology and its application in plant breeding, J. Jilin Norm. Univ. (Nat. Sci. Ed.) 2 (2016) 108–111 (in Chinese with English abstract).

[21]

X.D. Wang, H. Wang, Y. Long, L.Z. Liu, Y.J. Zhao, J.H. Tian, W.G. Zhao, B.J. Li, L. Chen, H.B. Chao, M.T. Li, Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L, Theor. Appl. Genet. 128 (2015) 1175–1192.

[22]

X.Y. Yan, C.M. Qu, J.N. Li, L. Chen, L.Z. Liu, QTL analysis of leaf photosynthesis rate and related physiological traits in Brassica napus, J. Integr. Agric. 14 (2015) 1261–1268.

[23]

D.D. Zhang, Y.P. Hua, X.H. Wang, H. Zhao, L. Shi, F.S. Xu, A high-density genetic map identifies a novel major QTL for boron efficiency in rapeseed (Brassica napus L.), PLoS One 9 (2014) 0112089.

[24]

G.D. Ding, Z.K. Zhao, L. Wang, D.D. Zhang, L. Shi, F.S. Xu, Identification and multiple comparisons of QTL and epistatic interaction conferring high yield under boron and phosphorus deprivation in Brassica napus, Euphytica 198 (2014) 337–351.

[25]

Z. Li, S.F. Mei, Z. Mei, X.L. Liu, T.D. Fu, G.S. Zhou, J.X. Tu, Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in rapeseed (Brassica napus), Euphytica 197 (2014) 341–353.

[26]

L.P. Qi, L. Mao, C.M. Sun, Y.Y. Pu, T.D. Fu, C.Z. Ma, J.X. Shen, J.X. Tu, B. Yi, J. Wen, Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network, Plant Breed. 133 (2014) 52–60.

[27]

L.Z. Liu, C.M. Qu, B. Wittkop, B. Yi, Y. Xiao, Y.J. He, R.J. Snowdon, J.N. Li, A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L, PLoS One 8 (2013) 0083052.

[28]

J. Wu, G.Q. Cai, J.Y. Tu, L.X. Li, S. Liu, X.P. Luo, L.P. Zhou, C.C. Fan, Y.M. Zhou, Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus, PLoS One 8 (2013) 0067740.

[29]

T.X. Shi, R.Y. Li, Z.K. Zhao, G.D. Ding, Y. Long, J.L. Meng, F.S. Xu, L. Shi, QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus, PLoS One 8 (2013) 0054559.

[30]

M.Y. Sun, W. Hua, J. Liu, S.M. Huang, X.F. Wang, G.H. Liu, H.Z. Wang, Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar, PLoS One 7 (2012) 0047037.

[31]

P. Yang, C. Shu, L. Chen, J.S. Xu, J.S. Wu, K.D. Liu, Identification of a major QTL for silique length and seed weight in rapeseed (Brassica napus L.), Theor. Appl. Genet. 125 (2012) 285–296.

[32]

Y. Zhang, X. Li, W. Chen, B. Yi, J. Wen, J.X. Shen, C.Z. Ma, B.Y. Chen, J.X. Tu, T.D. Fu, Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127–17, Mol. Breed. 28 (2011) 335–342.

[33]

M. Yang, G.D. Ding, L. Shi, F.S. Xu, J.L. Meng, Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus, Plant Soil 339 (2011) 97–111.

[34]

X.Y. Yan, J.N. Li, F.Y. Fu, M.Y. Jin, L. Chen, L.Z. Liu, Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L, Euphytica 170 (2009) 355–364.

[35]

D.S. Mei, H.Z. Wang, Q. Hu, Y.D. Li, Y.S. Xu, Y.C. Li, QTL analysis on plant height and flowering time in Brassica napus, Plant Breed. 128 (2009) 458–465.

[36]

F.Q. Feng, P.W. Liu, D.F. Hong, G.S. Yang, A major QTL associated with preharvest sprouting in rapeseed (Brassica napus L.), Euphytica 169 (2009) 57–68.

[37]

W. Chen, Y. Zhang, X.P. Liu, B.Y. Chen, J.X. Tu, T.D. Fu, Detection of QTL for six yield-related traits in rapeseed (Brassica napus) using DH and immortalized F-2 populations, Theor. Appl. Genet. 115 (2007) 849–858.

[38]

J.Q. Shi, R.Y. Li, D. Qiu, C.C. Jiang, Y. Long, C. Morgan, I. Bancroft, J.Y. Zhao, J.L. Meng, Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus, Genetics 182 (2009) 851–861.

[39]

F. Wang, C.Y. Guan, Molecular mapping and identification of quantitative trait loci for yield components in rapeseed (Brasscia napus L.), Hereditas 32 (2010) 271–277.

[40]

N. Li, J.Q. Shi, X.F. Wang, G.H. Liu, H.Z. Wang, A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.), BMC Plant Biol. 14 (2014) 114.

[41]

J.Q. Shi, J.P. Zhan, Y.H. Yang, J. Ye, S.M. Huang, R.Y. Li, X.F. Wang, G.H. Liu, H.Z. Wang, Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.), Sci. Rep. 5 (2015) 14481.

[42]

X. Luo, C.Z. Ma, Y. Yue, K.N. Hu, Y.Y. Li, Z.Q. Duan, M. Wu, J.X. Tu, J.X. Shen, B. Yi, T.D. Fu, Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping, BMC Genomics 16 (2015) 379.

[43]

D.F. Cai, Y.J. Xiao, W. Yang, W. Ye, B. Wang, M. Younas, J.S. Wu, K.D. Liu, Association mapping of six yield related traits in rapeseed (Brassica napus L.), Theor. Appl. Genet. 127 (2014) 85–96.

[44]

J. Zou, C.C. Jiang, Z.Y. Cao, R.Y. Li, Y. Long, S. Chen, J.L. Meng, Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping, Genome 53 (2010) 908–916.

[45]

C.M. Qu, S.M. Li, X.J. Duan, J.H. Fan, L.D. Jia, H.Y. Zhao, K. Lu, J.N. Li, X.F. Xu, R. Wang, Identification of candidate genes for seed glucosinolate content using asssociation mapping in Brassica napus L, Genes 6 (2015) 1215–1229.

[46]

J. Liu, W.X. Wang, D.S. Mei, H. Wang, L. Fu, D.M. Liu, Y.C. Li, Q. Hu, Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.), Front. Plant Sci. 7 (2016) 21.

[47]

Z. Huang, L. Xiao, X.L. Dun, S.Q. Xia, B. Yi, J. Wen, J.X. Shen, C.Z. Ma, J.X. Tu, J.L. Meng, T.D. Fu, Improvement of the recessive genic male sterile lines with a subgenomic background in Brassica napus by molecular marker-assisted selection, Mol. Breed. 29 (2012) 181–187.

[48]

S. Salvi, R. Tuberosa, The crop QTLome comes of age, Curr. Opin. Biotechnol. 32 (2015) 179–185.

[49]

National Agricultural Technology Extension and Service Center of China, Report of Regional Trial Implementation of National Winter Rapeseed Varieties, China Agricultural Science and Technology Press, Beijing, 2013.

[50]

National Agricultural Technology Extension and Service Center of China, Report of Regional Trial Implementation of National Winter Rapeseed Varieties, China Agricultural Science and Technology Press, Beijing, 2014.

[51]
National Agricultural Technology Extension and Service Center of China, Report of Regional Trial Implementation of National Winter Rapeseed Varieties, National Agricultural Technology Extension and Service Center of China, 2015.
[52]

F. Zhang, Y.G. Zhao, T.C. Gu, D.X. Zhang, F.L. Liu, R.X. Guo, G.P. Fu, X.K. Zhang, Yield and agronomic traits for winter rapeseed (Brassica napus L.) cultivars registered in China from 2001–2010, Chin. J. Oil Crop Sci. 34 (2012) 239–244 (in Chinese with English abstract).

[53]
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Rapeseed, National Standard of the People's Republic of China, 2006 1–8 (GB/T 11762–2006).
[54]

Y.G. Zhao, Y. Cheng, G.Y. Lu, J.S. Xu, G.P. Fu, X.L. Zou, Q.Y. Liu, X.K. Zhang, Characteristics and variation of winter rapeseed (Brassica napus L.) cultivars under high density, Chin. J. Oil Crop Sci. 37 (2015) 285–290 (in Chinese with English abstract).

[55]

N. Ma, Y.C. Li, Q. Hu, J. Li, G.M. Li, C.L. Zhang, Research of agronomic techniques for mechanical production of winter rape (Brassica napus L.) in south China, Chin. J. Oil Crop Sci. 32 (2010) 451–456 (in Chinese with English abstract).

[56]
S. Leng, G. Yang, Q. Zuo, C. Jin, Q. Zhu, M. Li, T. Zha, L. Sha, Preparation of blanket-shaped bed soil used for cultivating rapeseed seedling involves sieving topsoil, adding fungicide, and mixing with pure nitrogen, phosphorus pentoxide, potassium oxide, borax, organic fertilizer, and plant fiber (2015) (CN, CN103819272-A (2015–05-28) (in Chinese)).
[57]

M.F. Liu, X.P. Hu, Y.T. Liao, Q.X. Liao, X.Y. Wan, M.Y. Ji, Morphological parameters characteristics of mechanically transplanted plant in suitable transplanting period for different rape varieties, Trans. Chin. Soc. Agric. Eng. 31 (2015) 79–88 (in Chinese with English abstract).

[58]
C. Wu, Z. Tang, Q. Tang, J. Wu, S. Wang, C. Jin, M. Hu, G. Wang, S. Wang, M. Jin, Blanket type fully automatic rapeseed planting machine in which joint cutting module, planting arm, and soil compacting module are arranged from front to rear (2015) (CN, CN104285564-A (2015–01-21) (in Chinese)).
[59]
S. Leng, G. Yang, Q. Zuo, C. Jin, Q. Zhu, M. Li, X. Gai, J. Tan, H. Liu, Rapeseed sprouting-type seedling blanket quality improving method, involves placing seedling disk in open environment, and checking soil humidity, temperature and moisture conditions for every day when water is poured into soil (2014) (CN, CN103766130-A (2014–05-07) (in Chinese)).
[60]

Q.X. Liao, L. Chen, H.T. Li, C.R. Han, M.F. Liu, Cleaning unit test-bed of extraction components for rape combine harvester, Trans. Chin. Soc. Agric. Mach. 44 (2013) 80–85 (79 (in Chinese with English abstract)).

[61]

J.F. Shi, S.H. Leng, Q.S. Zuo, Y. Tang, G. Yang, Mechanical harvesting technique in rapeseed (Brassica napus L.): harvesting loss of different rapeseed cultivars, Chin. J. Oil Crop Sci. 31 (2009) 470–473 (in Chinese with English abstract).

[62]

J.K. Wang, M.L. Wu, S.G. Ren, C.Z. Tang, Kinematic and dynamic analysis on reciprocating cutters cutting mechanism for rape harvester, Chin. Agric. Sci. Bull. 27 (2011) 190–194.

[63]

J. Kuai, Y.Y. Sun, Q.S. Zuo, H.D. Huang, Q.X. Liao, C.Y. Wu, J.W. Lu, J.S. Wu, G.S. Zhou, The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing, Sci. Rep. 5 (2015) 18835.

[64]

Y.S. Li, C.B. Yu, S. Zhu, L.H. Xie, X.J. Hu, X. Liao, X.S. Liao, Z. Che, High planting density benefits to mechanized harvest and nitrogen application rates of rapeseed (Brassica napus L.), Soil Sci. Plant Nutr. 60 (2014) 384–392.

[65]

Y. Yang, J. Kuai, L.R. Wu, T.T. Liu, Y.Y. Sun, Q.T. Zuo, G.S. Zhou, J.S. Wu, Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment, Acta Agron. Sin. 41 (2015) 938–945 (in Chinese with English abstract).

[66]

N. Ma, J.Z. Yuan, M. Li, J. Li, L.Y. Zhang, L.X. Liu, M.S. Naeem, C.L. Zhang, Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter rapeseed (Brassica napus L.), PLoS One 9 (2014) e114232.

[67]

N. Ma, C.L. Zhang, J. Li, G.M. Li, Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.), Chin. J. Oil Crop Sci. 31 (2009) 180–184 in Chinese with English abstract.

[68]

S.J. Zhang, X. Liao, C.L. Zhang, H.J. Xu, Influences of plant density on the seed yield and oil content of winter rapeseed (Brassica napus L.), Ind. Crop. Prod. 40 (2012) 27–32.

[69]

X. Song, F.L. Liu, P.Y. Zheng, X.K. Zhang, G.Y. Lu, G.P. Fu, Y. Cheng, Correlation analysis between agronomic traits and yield of rapeseed (Brassica napus L.) for high-density planting, Sci. Agric. Sin. 43 (2010) 1800–1806 (in Chinese with English abstract).

[70]

L.H. Xie, C.B. Yu, X.J. Hu, Y.S. Li, X. Liao, S.J. Zhang, H. He, Y.G. Cheng, Z.J. Zhang, X.S. Liao, Z. Che, Optimum application rates and influence of nitrogen, phosphorus and potassium on yield of high density and direct seeding rapeseed, Chin. J. Oil Crop Sci. 35 (2013) 64–68 (in Chinese with English abstract).

[71]

X.S. Ye, J. Hong, L. Shi, F.S. Xu, Adaptability mechanism of nitrogen-efficient germplasm of natural variation to low nitrogen stress in Brassica napus, J. Plant Nutr. 33 (2010) 2028–2040.

[72]

N. Gruber, J.N. Galloway, An earth-system perspective of the global nitrogen cycle, Nature 451 (2008) 293–296.

[73]

M.M. Zheng, H. Zheng, Y.X. Wu, Y. Xiao, Y.H. Du, W.H. Xu, F. Lu, X.K. Wang, Z.Y. Ouyang, Changes in nitrogen budget and potential risk to the environment over 20years (1990–2010) in the agroecosystems of the Haihe Basin, China, J. Environ. Sci. 28 (2015) 195–202.

[74]

S.P. Wang, X.K. Li, J.W. Lu, H. Li, Q.F. Wu, H. Wang, Y. Wang, G.B. Xiao, X.X. Xue, Z.W. Xu, Effects of controlled release urea application on yield, nitrogen recovery efficiency of rapeseed and soil inorganic nitrogen content, Plant Nutr. Fertil. Sci. 18 (2012) 1449–1456 (in Chinese with English abstract).

[75]

X.K. Li, S.P. Wang, J.W. Lu, Z.J. Li, B. Liu, J. Zou, Application quantity of multi-nutrient and long-effect special fertilizer for rapeseed, Chin. J. Oil Crop Sci. 33 (2011) 593–597 (in Chinese with English abstract).

[76]

H.X. Hu, Y. Cheng, Y.H. Ma, X.S. Yu, J.X. Xiang, Decomposition characteristics of returned rapeseed straw in soil and effects on soil fertility, Chin. J. Eco-Agric. 20 (2012) 297–302 (in Chinese with English abstract).

[77]

L.L. Liu, W.H. Wang, R.R. Zhou, The effect of rapeseed straw turnover on rice production in season, World J. For. 4 (2014) 1–6.

[78]

D.Y. Wei, J.Q. Mei, Y. Fu, J.O. Disi, J.N. Li, W. Qian, Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus, Mol. Breed. 34 (2014) 1797–1804.

[79]

J. Wu, G.Q. Cai, J.Y. Tu, L.X. Li, S. Liu, X.P. Luo, L.P. Zhou, C.C. Fan, Y.M. Zhou, Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus, PLoS One 8 (2013) e67740.

[80]

X.R. Yin, B. Yi, W. Chen, W.J. Zhang, J.X. Tu, W.G.D. Fernando, T.D. Fu, Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments, Euphytica 173 (2009) 25–35.

[81]

J.Q. Li, Z.K. Zhao, A. Hayward, H.Y. Cheng, D.H. Fu, Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus, Euphytica 205 (2015) 483–489.

[82]

L.J. Wei, H.J. Jian, K. Lu, F. Filardo, N. Yin, L.Z. Liu, C.M. Qu, W. Li, H. Du, J.N. Li, Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus, Plant Biotechnol. J. 14 (2016) 1368–1380.

[83]

X.J. Hu, D.P. Roberts, L.H. Xie, J.E. Maul, C.B. Yu, Y.H. Li, M.L. Jiang, X.S. Liao, Z. Che, X. Liao, Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on rapeseed in the field, Biol. Control 70 (2014) 54–64.

[84]

X.J. Hu, D.P. Roberts, L.H. Xie, J.E. Maul, C.B. Yu, Y.S. Li, Y.B. Zhang, L. Qin, X. Liao, Components of a rice-rapeseed production system augmented with Trichoderma sp. Tri-1 control Sclerotinia sclerotiorum on rapeseed, Phytopathology 105 (2015) 1325–1333.

[85]

X.J. Hu, L. Qin, D.P. Roberts, D.K. Lakshman, Y.M. Gong, J.E. Maul, L.H. Xie, C.B. Yu, Y.S. Li, L. Hu, Y.B. Zhang, X. Liao, Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on rapeseed, Crop. Prot. 79 (2016) 124–127.

[86]

D.H. Jiang, Y.P. Fu, G.Q. Li, S.A. Ghabrial, Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum, Adv. Virus Res. 86 (2013) 215–248.

[87]

J. Xie, D. Jiang, New Insights into mycoviruses and exploration for the biological control of crop fungal diseases, Annu. Rev. Phytopathol. 52 (2014) 45–68.

[88]

P.H. Williams, A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga, Phytopathology 56 (1966) 624–626.

[89]

A.L. Chai, X.W. Xie, Y.X. Shi, B.J. Li, Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China, Can. J. Plant Pathol. 36 (Suppl. 1) (2014) 142–153.

[90]

Z.Y. Piao, Y.Q. Deng, S.R. Choi, Y.J. Park, Y.P. Lim, SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis), Theor. Appl. Genet. 108 (2004) 1458–1465.

[91]

J.J. Chen, J. Jing, Z.X. Zhan, T. Zhang, C.Y. Zhang, Z.Y. Piao, Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa, PLoS One 8 (2013) e85307.

[92]

Z.X. Zhan, Y.F. Jiang, Z.Y. Zhu, C.S. Zhang, Q.Y. Yang, Q. Li, Z.K. Hou, J.F. Gong, Y.G. Cheng, J.S. Wu, T.D. Fu, Y.M. Zhou, Z.Y. Piao, C.Y. Zhang, Development of close linked marker to PbBa8.1 conferring canola resistance to Plasmodiophora brassicae, Chin. J. Oil Crop Sci. 37 (2015) 766–771 (in Chinese with English abstract).

The Crop Journal
Pages 127-135
Cite this article:
Hu Q, Hua W, Yin Y, et al. Rapeseed research and production in China. The Crop Journal, 2017, 5(2): 127-135. https://doi.org/10.1016/j.cj.2016.06.005

452

Views

1

Downloads

162

Crossref

N/A

Web of Science

175

Scopus

2

CSCD

Altmetrics

Received: 03 May 2016
Revised: 20 June 2016
Accepted: 11 July 2016
Published: 21 July 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return