AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Sequence-based genetic mapping of Ds-tagged insertions to characterize malting-related traits in barley

Surinder Singh1Jaswinder Singh( )
Plant Science Department, 21 111 Rue Lakeshore, St Anne de Bellevue, McGill University, Quebec H9X 3V9, Canada

1 Current address: Department of Food and Bioproduct Sciences, University of Saskatchewan 51 Campus Drive, S7N 5A8, Saskatoon, Canada.

Show Author Information

Abstract

Among various functional genomics tools used to characterize genes in plants, transposon-based mutagenesis approaches offer great potential, especially in barley and wheat, which possess large genomes and in which genetic transformation is not routine. Two Ds transposon flanking sequences (TNPs), TNP-29 (27.4cM (centiMorgan)) and TNP-79 (70.3cM), were mapped in the vicinity of a malting quality QTL located on chromosome 4H of barley. Reactivation of the Ds transposon sequence from these TNP lines led to the identification of genes in the malting QTL regions. Several Ds (dissociation) lines were generated by crossing TNP-29 and TNP-79 with an AcTPase (activator) expressing line (25-B), and F2 progenies were subsequently screened for Ds insertions at new locations. To further characterize these Ds mutants, we mapped the new Ds flanking sequences on a barley genetic map and found that 29% of Ds were located in regions associated with the malting QTL located on chromosome 4H and in close proximity to other important malting-associated QTL across the barley chromosome. Using a sequence based approach, a linkage map was generated that confirmed the position of Ds loci in the barley genome map. Locating these Ds loci on the barley map opens avenues to dissect important malting QTL for facilitating identification of candidate malting genes.

References

[1]

The International Barley Genome Sequencing Consortium (IBSC), A physical, genetic and functional sequence assembly of the barley genome, Nature 491 (2012) 711-716.

[2]

N. Sreenivasulu, A. Graner, U. Wobus, Barley genomics: an overview, Int. J. Plant Genom. 2008 (2008) 486258.

[3]

B.S. Gill, R. Appels, A.M. Botha-Oberholster, C.R. Buell, J.L. Bennetzen, B. Chalhoub, F. Chumley, J. Dvorak, M. Iwanaga, B. Keller, W.L. Li, W. Richard McCombie, Y. Ogihara, F. Quetier, T. Sasaki, A workshop report on wheat genome sequencing: international genome research on wheat consortium, Genetics 168 (2004) 1087-1096.

[4]

P.M. Hayes, B.H. Liu, S.J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D. Rasmusson, M. Sorrells, S.E. Ullrich, D. Wesenberg, A. Kleinhofs, Quantitative trait locus effects and environmental interaction in a sample of North-American barley germplasm, Theor. Appl. Genet. 87 (1993) 392-401.

[5]

S. Singh, H.Q. Tan, J. Singh, Mutagenesis of barley malting quality QTLs with Ds transposons, Funct. Integr. Genomics 12 (2012) 131-141.

[6]

J. Singh, S.B. Zhang, C. Chen, L. Cooper, P. Bregitzer, A. Sturbaum, P.M. Hayes, P.G. Lemaux, High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals, Plant Mol. Biol. 62 (2006) 937-950.

[7]

R.H. Brown, J. Singh, S. Singh, L. Dahleen, P. Lemaux, N. Stein, M. Mascher, P. Bregitzer, Behavior of a modified Dissociation element in barley: a tool for genetic studies and for breeding transgenic barley, Mol. Breed. 35 (2015) 1-15.

[8]

A.R. Barr, A. Karakousis, R.C.M. Lance, S.J. Logue, S. Manning, K.J. Chalmers, J.M. Kretschmer, W.J.R. Boyd, H.M. Collins, S. Roumeliotis, S.J. Coventry, D.B. Moody, B.J. Read, D. Poulsen, C.D. Li, G.J. Platz, P.A. Inkerman, J.F. Panozzo, B.R. Cullis, A.B. Smith, P. Lim, P. Langridge, Mapping and QTL analysis of the barley population Chebec × Harrington, Aust. J. Agric. Res. 54 (2003) 1125-1130.

[9]

X.Q. Zhang, S. Westcott, J. Panozzo, M. Cakir, S. Harasymow, A. Tarr, S. Broughton, R. Lance, C. Li, Comparative analysis of Australian and Canadian barleys for seed dormancy and malting quality, Euphytica 188 (2012) 103-111.

[10]

A. Oziel, P.M. Hayes, F.Q. Chen, B. Jones, Application of quantitative trait locus mapping to the development of winter-habit malting barley, Plant Breed. 115 (1996) 43-51.

[11]

H. Bezant, D.A. Laurie, N. Pratchett, J. Chojecki, M.J. Kearsey, Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker-regression, Plant Breed. 116 (1997) 141-145.

[12]

D.E. Mather, N.A. Tinker, D.E. LaBerge, M. Edney, B.L. Jones, B.G. Rossnagel, W.G. Legge, K.G. Briggs, R.G. Irvine, D.E. Falk, K.J. Kasha, Regions of the genome that affect grain and malt quality in a north American two-row barley cross, Crop Sci. 37 (1997) 544-554.

[13]

L.A. Marquez-Cedillo, P.M. Hayes, B.L. Jones, A. Kleinhofs, W.G. Legge, B.G. Rossnagel, K. Sato, E. Ullrich, D.M. Wesenberg, QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups, Theor. Appl. Genet. 101 (2000) 173-184.

[14]

M. Elía, J.S. Swanston, M. Moralejo, A. Casas, A.M. Pérez-Vendrell, F.J. Ciudad, W.T.B. Thomas, P.L. Smith, S.E. Ullrich, J.L. Molina-Cano, A model of the genetic differences in malting quality between European and north American barley cultivars based on a QTL study of the cross Triumph×Morex, Plant Breed. 129 (2010) 280-290.

[15]

T.S. Zhou, I. Takashi, K. Ryouichi, H. Naohiko, K. Makoto, H. Takehiro, S. Kazuhiro, Malting quality quantitative trait loci on a high-density map of Mikamo golden×Harrington cross in barley (Hordeum vulgare L.), Mol. Breed. 30 (2012) 103-112.

[16]

W.T.B. Thomas, W. Powell, J.S. Swanston, R.P. Ellis, K.J. Chalmers, U.M. Barua, P. Jack, V. Lea, B.P. Forster, R. Waugh, D.B. Smith, Quantitative trait loci for germination and malting quality characters in a spring barley cross, Crop Sci. 36 (1996) 265-273.

[17]

W. Powell, W.T.B. Thomas, E. Baird, P. Lawrence, A. Booth, B. Harrower, J.W. McNicol, R. Waugh, Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms, Heredity 79 (1997) 48-59.

[18]

J.M. Wang, J.M. Yang, Q.S. Zhang, J.H. Zhu, Q.J. Jia, W. Hua, S. Yang, C.D. Li, M.X. Zhou, Mapping a major QTL for malt extract of barley from a cross between TX9425×Naso Nijo, Theor. Appl. Genet. 128 (2015) 943-952.

[19]

E. Islamovic, D.E. Obert, A.D. Budde, M. Schmitt,, A. Kilian, S. Chao, G. Lazo, J.M. Marshall, E.N. Jellen, P.J. Maughan, G. Hu, K.E. Klos, R.H. Brown, E.W. Jackson, Quantitative trait loci of barley malting quality trait components in the stellar/01Ab8219 mapping population, Mol. Breed. 34 (2014) 59-73.

[20]

Y. Wan, P.G. Lemaux, Generation of large numbers of independently transformed fertile barley plants, Plant Physiol. 104 (1994) 37-48.

[21]

L.D. Cooper, L. Marquez-Cedillo, J. Singh, A.K. Sturbaum, S. Zhang, V. Edwards, K. Johnson, A. Kleinhofs, S. Rangel, V. Carollo, P. Bregitzer, P.G. Lemaux, P.M. Hayes, Mapping Ds insertions in barley using a sequence-based approach, Mol. Genet. Genomics 272 (2004) 181-193.

[22]

H.Q. Tan, J. Singh, High-efficiency thermal asymmetric interlaced (HE-TAIL) PCR for amplification of Ds transposon insertion sites in barley, J. Plant Mol. Biol. Biotechnol. 2 (2010) 9-14.

[23]

R.H. Brown, L. Dahleen, P. Bregitzer, An efficient method for flanking sequence isolation in barley, Crop Sci. 52 (2012) 1229-1234.

[24]

M.A. Mgonja, L.S. Dahleen, J.D. Franckowiak, Subsets from mapping populations for localization of new genes in barley, Barley Genet. Newsl. (USA) 24 (1994) 14-23.

[25]

A. Pan, P.M. Hayes, F. Chen, T.H.H. Chen, T. Blake, S. Wright, I. Karsai, Z. Bedö, Genetic analysis of the components of winter hardiness in barley (Hordeum vulgare L.), Theor. Appl. Genet. 89 (1994) 900-910.

[26]

J.W. Van Ooijen, Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species, Genet. Res. 93 (2011) 343-349.

[27]

J. Jansen, G.A. de Jong, W.J. van Ooijen, Constructing dense genetic linkage maps, Theor. Appl. Genet. 102 (2001) 1113-1122.

[28]

H.S. Randhawa, J. Singh, P.G. Lemaux, K.S. Gill, Mapping barley Ds insertions using wheat deletion lines reveals high insertion frequencies in gene-rich regions with high to moderate recombination rates, Genome 52 (2009) 566-575.

[29]

T. Koprek, D. McElroy, J. Louwerse, R. Williams-Carrier, P.G. Lemaux, An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function, Plant J. 24 (2000) 253-263.

[30]

T.B. Zhao, M. Palotta, P. Langridge, M. Prasad, A. Graner, P. Schulze-Lefert, T. Koprek, Mapped Ds/T-DNA launch pads for functional genomics in barley, Plant J. 47 (2006) 811-826.

[31]

R. Meissner, V. Chague, Q.H. Zhu, E. Emmanuel, Y. Elkind, A.A. Levy, A high throughput system for transposon tagging and promoter trapping in tomato, Plant J. 22 (2000) 265-274.

[32]

T. Kolesnik, I. Szeverenyi, D. Bachmann, C.S. Kumar, S.Y. Jiang, R. Ramamoorthy, M.N. Cai, Z.G. Ma, V. Sundaresan, S. Ramachandran, Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences, Plant J. 37 (2004) 301-314.

[33]

C.M. Kim, H.L. Piao, S.J. Park, N.S. Chon, B.I. Je, B. Sun, S.H. Park, J.Y. Park, E.J. Lee, M.J. Kim, Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice, Plant J. 39 (2004) 252-263.

[34]

E. Vollbrecht, J. Duvick, J.P. Schares, K.R. Ahern, P. Deewatthanawong, L. Xu, L.J. Conrad, K. Kikuchi, T.A. Kubinec, B.D. Hall, Genome-wide distribution of transposed Dissociation elements in maize, Plant Cell 22 (2010) 1667-1685.

[35]

S. Raina, R. Mahalingam, F.Q. Chen, N. Fedoroff, A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana, Plant Mol. Biol. 50 (2002) 91-108.

[36]

T. Kuromori, T. Hirayama, Y. Kiyosue, H. Takabe, S. Mizukado, T. Sakurai, K. Akiyama, A. Kamiya, T. Ito, K. Shinozaki, A collection of 11800 single-copy Ds transposon insertion lines in Arabidopsis, Plant J. 37 (2004) 897-905.

[37]

N.M. Upadhyaya, X.R. Zhou, Q.H. Zhu, K. Ramm, L. Wu, A. Eamens, R. Sivakumar, T. Kato, D.W. Yun, C. Santhoshkumar, K.K. Narayanan, J.W. Peacock, E.S. Dennis, An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice, Funct. Plant Biol. 29 (2002) 547-559.

[38]

J.Z. Jia, S.C. Zhao, X.Y. Kong, Y.R. Li, G.Y. Zhao, W.M. He, R. Appels, M. Pfeifer, Y. Tao, X.Y. Zhang, R.L. Jing, C. Zhang, Y.Z. Ma, L.F. Gao, C. Gao, M. Spannagl, K.F.X. Mayer, D. Li, S.K. Pan, F.Y. Zheng, Q. Hu, X.C. Xia, J.W. Li, Q.S. Liang, J. Chen, T. Wicker, C.Y. Gou, H.H. Kuang, G.Y. He, Y.D. Luo, B. Keller, Q.J. Xia, P. Lu, J.Y. Wang, H.F. Zou, R.Z. Zhang, J.Y. Xu, J.L. Gao, C. Middleton, Z.W. Quan, G.M. Liu, J. Wang, International Wheat Genome Sequencing Consortium, H.M. Yang, X. Liu, Z.H. He, L. Mao, J. Wang, Aegilops tauschii Draft genome sequence reveals a gene repertoire for wheat adaptation, Nature 496 (2013) 91-95.

[39]

T. Yuo, Y. Yamashita, H. Kanamori, T. Matsumoto, U. Lundqvist, K. Sato, M. Ichii, S.A. Jobling, S. Taketa, A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley, J. Exp. Bot. 63 (2012) 5223-5232.

[40]

R.H. Brown, P. Bregitzer, A insertional mutant of a barley gene results in indeterminate spikelet development, Crop Sci. 51 (2011) 1664-1672.

[41]

R. Kaur, K. Singh, J. Singh, A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals, Funct. Integr. Genomics 13 (2013) 167-177.

[42]

M. Singh, S. Singh, H. Randhawa, J. Singh, Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_9 class is associated with pre-harvest sprouting in wheat (Triticum aestivum L.), PLoS One 8 (2013) e77009.

The Crop Journal
Pages 11-20
Cite this article:
Singh S, Singh J. Sequence-based genetic mapping of Ds-tagged insertions to characterize malting-related traits in barley. The Crop Journal, 2017, 5(1): 11-20. https://doi.org/10.1016/j.cj.2016.07.003

248

Views

2

Downloads

2

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 27 April 2016
Revised: 09 July 2016
Accepted: 18 September 2016
Published: 23 September 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return