AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Creation of targeted inversion mutations in plants using an RNA-guided endonuclease

Congsheng Zhanga,bChanglin LiuaJianfeng WengaBeijiu ChengbFang LiuaXinhai LiaChuanxiao Xiea( )
Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
Anhui Agricultural University, Hefei 230036, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases (RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were 2.6% and 2.2% in the Arabidopsis FLOWERING TIME (AtFT) and TERMINAL FLOWER 1 (AtTFL1) loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement.

References

[1]

T.S. Painter, A new method for the study of chromosome rearrangements and the plotting of chromosome maps, Science 78 (1933) 585–586.

[2]

D.B. Lowry, J.H. Willis, A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation, PLoS Biol. 8 (2010), e1000500.

[3]

A. Navarro, N.H. Barton, Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes, Science 300 (2003) 321–324.

[4]

E. Allen, Z.X. Xie, A.M. Gustafson, G.H. Sung, J.W. Spatafora, J.C. Carrington, Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana, Nat. Genet. 36 (2004) 1282–1290.

[5]

G. Blanc, A. Barakat, R. Guyot, R. Cooke, M. Delseny, Extensive duplication and reshuffling in the Arabidopsis genome, Plant Cell 12 (2000) 1093–1101.

[6]

J.F. Chen, Q.F. Huang, D.Y. Gao, J.Y. Wang, Y.S. Lang, T.Y. Liu, B. Li, Z.T. Bai, J.L. Goicoechea, C.Z. Liang, C.B. Chen, W.L. Zhang, S.H. Sun, Y. Liao, X.M. Zhang, L. Yang, C.L. Song, M.J. Wang, J.F. Shi, G. Liu, J.J. Liu, H.L. Zhou, W.L. Zhou, Q.L. Yu, N. An, Y. Chen, Q.L. Cai, B. Wang, B.H. Liu, J.M. Min, Y. Huang, H.L. Wu, Z.Y. Li, Y. Zhang, Y. Yin, W.Q. Song, J.M. Jiang, S.A. Jackson, R.A. Wing, J. Wang, M.S. Chen, Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution, Nat. Commun. 4 (2013) 1595.

[7]

J. Ma, J. Stiller, Y.M. Wei, Y.L. Zheng, K.M. Devos, J. Doležel, C.L. Liu, Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed from chromosome shotgun sequence data, Genome Biol. Evol. 6 (2014) 3039–3048.

[8]

C. Yu, J. Zhang, T. Peterson, Genome rearrangements in maize induced by alternative transposition of reversed Ac/Ds termini, Genetics 188 (2011) 59–67.

[9]

P.S. Schnable, D. Ware, R.S. Fulton, J.C. Stein, F.S. Wei, S. Pasternak, C.Z. Liang, J.W. Zhang, L. Fulton, T.A. Graves, P. Minx, A.D. Reily, L. Courtney, S.S. Kruchowski, C. Tomlinson, C. Strong, K. Delehaunty, C. Fronick, B. Courtney, S.M. Rock, E. Belter, F.Y. Du, K. Kim, R.M. Abbott, M. Cotton, A. Levy, P. Marchetto, K. Ochoa, S.M. Jackson, B. Gillam, W.Z. Chen, L. Yan, J. Higginbotham, M. Cardenas, J. Waligorski, E. Applebaum, L. Phelps, J. Falcone, K. Kanchi, T. Thane, A. Scimone, N. Thane, J. Henke, T. Wang, J. Ruppert, N. Shah, K. Rotter, J. Hodges, E. Ingenthron, M. Cordes, S. Kohlberg, J. Sgro, B. Delgado, K. Mead, A. Chinwalla, S. Leonard, K. Crouse, K. Collura, D. Kudrna, J. Currie, R.F. He, A. Angelova, S. Rajasekar, T. Mueller, R. Lomeli, G. Scara, A. Ko, K. Delaney, M. Wissotski, G. Lopez, D. Campos, M. Braidotti, E. Ashley, W. Golser, H. Kim, S. Lee, J.K. Lin, Z. Dujmic, W. Kim, J. Talag, A. Zuccolo, C.Z. Fan, A. Sebastian, M. Kramer, L. Spiegel, L. Nascimento, T. Zutavern, B. Miller, C. Ambroise, S. Muller, W. Spooner, A. Narechania, L.Y. Ren, S. Wei, S. Kumari, B. Faga, M.J. Levy, L. McMahan, P. Van Buren, M.W. Vaughn, K. Ying, C.T. Yeh, S.J. Emrich, Y. Jia, A. Kalyanaraman, A.P. Hsia, W.B. Barbazuk, R.S. Baucom, T.P. Brutnell, N.C. Carpita, C. Chaparro, J.M. Chia, J.M. Deragon, J.C. Estill, Y. Fu, J.A. Jeddeloh, Y.J. Han, H. Lee, P.H. Li, D.R. Lisch, S.Z. Liu, Z.J. Liu, D.H. Nagel, M.C. McCann, P. SanMiguel, A.M. Myers, D. Nettleton, J. Nguyen, B.W. Penning, L. Ponnala, K.L. Schneider, D.C. Schwartz, A. Sharma, C. Soderlund, N.M. Springer, Q. Sun, H. Wang, M. Waterman, R. Westerman, T.K. Wolfgruber, L.X. Yang, Y. Yu, L.F. Zhang, S.G. Zhou, Q.H. Zhu, J.L. Bennetzen, R.K. Dawe, J.M. Jiang, N. Jiang, G.G. Presting, S.R. Wessler, S. Aluru, R.A. Martienssen, S.W. Clifton, W.R. McCombie, R.A. Wing, R.K. Wilson, The B73 maize genome: complexity, diversity, and dynamics, Science 326 (2009) 1112–1115.

[10]

M.H. Porteus, D. Carroll, Gene targeting using zinc finger nucleases, Nat. Biotechnol. 23 (2005) 967–973.

[11]

D. Reyon, S.Q. Tsai, C. Khayter, J.A. Foden, J.D. Sander, J.K. Joung, FLASH assembly of TALENs for high-throughput genome editing, Nat. Biotechnol. 30 (2012) 460–465.

[12]

H.R. Gao, J. Smith, M.Z. Yang, S. Jones, V. Djukanovic, M.G. Nicholson, A. West, D. Bidney, S.C. Falco, D. Jantz, L.A. Lyznik, Heritable targeted mutagenesis in maize using a designed endonuclease, Plant J. 61 (2009) 176–187.

[13]

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, E. Charpentier, A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity, Science 337 (2012) 816–821.

[14]

J.F. Li, J.E. Norville, J. Aach, M. McCormack, D.D. Zhang, J. Bush, G.M. Church, J. Sheen, Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9, Nat. Biotechnol. 31 (2013) 688–691.

[15]

J. Miao, D.S. Guo, J.Z. Zhang, Q.P. Huang, G.J. Qin, X. Zhang, J.M. Wan, H.Y. Gu, L.J. Qu, Targeted mutagenesis in rice using CRISPR–Cas system, Cell Res. 23 (2013) 1233–1236.

[16]

Q.W. Shan, Y.P. Wang, J. Li, Y. Zhang, K.L. Chen, Z. Liang, K. Zhang, J.X. Liu, J.J. Xi, J.L. Qiu, C.X. Gao, Targeted genome modification of crop plants using a CRISPR–Cas system, Nat. Biotechnol. 31 (2013) 686–688.

[17]

H.Y. Wang, H. Yang, C.S. Shivalila, M.M. Dawlaty, A.W. Cheng, F. Zhang, R. Jaenisch, One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell 153 (2013) 910–918.

[18]

K.B. Xie, Y.N. Yang, RNA-guided genome editing in plants uing a CRISPR–Cas system, Mol. Plant 6 (2013) 1975–1983.

[19]

H. Zhang, J.S. Zhang, P.L. Wei, B.T. Zhang, F. Gou, Z.Y. Feng, Y.F. Mao, L. Yang, H. Zhang, N.F. Xu, J.K. Zhu, The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation, Plant Biotechnol. J. 12 (2014) 797–807.

[20]

C. Brandl, O. Ortiz, B. Röttig, B. Wefers, W. Wurst, R. Kühn, Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos, FEBS Open Bio 5 (2015) 26–35.

[21]

P.S. Choi, M. Meyerson, Targeted genomic rearrangements using CRISPR/Cas technology, Nat. Commun. 5 (2014) 3728.

[22]

P. Essletzbichler, T. Konopka, F. Santoro, D. Chen, B.V. Gapp, R. Kralovics, T.R. Brummel, S.M.B. Nijman, T. Bürckstümmer, Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line, Genome Res. 24 (2014) 2059–2065.

[23]

Y.P. Zhao, C.S. Zhang, W.W. Liu, W. Gao, C.L. Liu, G.Y. Song, W.X. Li, L. Mao, B. Chen, Y.B. Xu, X.H. Li, C.X. Xie, An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design, Sci. Rep. 6 (2016) 23890.

[24]

D.P. Wickland, Y. Hanzawa, The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms, Mol. Plant 8 (2015) 983–997.

[25]

L. Cong, F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, Multiplex genome engineering using CRISPR/Cas systems, Science 339 (2013) 819–823.

[26]

S.J. Clough, A.F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. 16 (1998) 735–743.

[27]

L. Monna, N. Kitazawa, R. Yoshino, J. Suzuki, H. Masuda, Y. Maehara, M. Tanji, M. Sato, S. Nasu, Y. Minobe, Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis, DNA Res. 9 (2002) 11–17.

[28]

H.J. Lee, J. Kweon, E. Kim, S. Kim, J.S. Kim, Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases, Genome Res. 22 (2012) 539–548.

[29]

Y.P. Qi, X.H. Li, Y. Zhang, C.G. Starker, N.J. Baltes, F. Zhang, J.D. Sander, D. Reyon, J.K. Joung, D.F. Voytas, Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases, G3-Genes Genom. Genet. 3 (2013) 1707–1715.

[30]

R. Torres, M. Martin, A. Garcia, J.C. Cigudosa, J. Ramirez, S. Rodriguez-Perales, Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system, Nat. Commun. 5 (2014) 3964.

The Crop Journal
Pages 83-88
Cite this article:
Zhang C, Liu C, Weng J, et al. Creation of targeted inversion mutations in plants using an RNA-guided endonuclease. The Crop Journal, 2017, 5(1): 83-88. https://doi.org/10.1016/j.cj.2016.08.001

253

Views

5

Downloads

23

Crossref

N/A

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 30 May 2016
Revised: 08 July 2016
Accepted: 02 November 2016
Published: 12 November 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return