AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Drought-responsive genes expressed predominantly in root tissues are enriched with homotypic cis-regulatory clusters in promoters of major cereal crops

Muhammad Ramzan KhanbImran KhanaZahra IbrarcJens LéonaAli Ahmed Naza( )
Institute of Crop Science and Resource Conservation (INRES), Department of Crop Genetics and Biotechnology, Rheinische Friedrich-Wilhelms University of Bonn, Germany
National Centre for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

The root appears to be the most relevant organ for breeding drought stress tolerance. However, our knowledge about temporal and spatial regulation of drought-associated genes in the root remains fragmented, especially in crop plants. We performed a meta-analysis of expression divergence of essential drought-inducible genes and analyzed their association with cis-elements in model crops and major cereal crops. Our analysis of 42 selected drought-inducible genes revealed that these are expressed primarily in roots, followed by shoot, leaf, and inflorescence tissues, especially in wheat. Quantitative real-time RT-PCR analysis confirmed higher expression of TaDREB2 and TaAQP7 in roots, correlated with extensive rooting and drought-stress tolerance in wheat. A promoter scan up to 2kb upstream of the translation start site using phylogenetic footprinting revealed 708 transcription factor binding sites, including drought response elements (DREs), auxin response elements (AuxREs), MYCREs/MYBREs, ABAREs, and ERD1 in 19 selected genes. Interestingly, these elements were organized into clusters of overlapping transcription factor binding sites known as homotypic clusters (HCTs), which modulate drought physiology in plants. Taken together, these results revealed the expression preeminence of major drought-inducible genes in the root, suggesting its crucial role in drought adaptation. The occurrence of HCTs in drought-inducible genes highlights the putative evolutionary modifications of crop plants in developing drought adaptation. We propose that these DNA motifs can be used as molecular markers for breeding drought-resilient cultivars, particularly in the cereal crops.

References

[1]

A.H. Price, J.E. Cairns, P. Horton, H.G. Jones, H. Griffiths, Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses, J. Exp. Bot. 53 (2002) 989–1004.

[2]

H.R. Lafitte, G. Yongsheng, S. Yan, Z.H. Li, Whole plant responses, key processes, and adaptation to drought stress: the case of rice, J. Exp. Bot. 58 (2007) 169–175.

[3]

R. Tuberosa, S. Salvi, Genomics approaches to improve drought tolerance in crops, Trends Plant Sci. 11 (2006) 405–412.

[4]

E. Pennisi, Plant genetics. The blue revolution, drop by drop, gene by gene, Science 320 (2008) 171–173.

[5]

W.J. Davies, S. Wilkinson, B. Loveys, Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture, New Phytol. 153 (2002) 449–460.

[6]

S. Wilkinson, W.J. Davies, ABA-based chemical signaling: the coordination of responses to stress in plants, Plant Cell Environ. 25 (2002) 195–210.

[7]

D.P. Schachtman, I.Q. Goodger, Chemical root to shoot signaling under drought, Trends Plant Sci. 13 (2002) 281–287.

[8]

A. Janiak, M. Kwaśniewski, I. Szarejko, Gene expression regulation in roots under drought, J. Exp. Bot. 67 (2016) 1003–1014.

[9]

H. Hu, J. You, Y. Fang, X. Zhu, Z. Qi, L. Xiong, Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice, Plant Mol. Biol. 67 (2008) 169–181.

[10]

K.R. Jaglo-Ottosen, S.J. Gilmour, D.G. Zarka, O. Schabenberger, M.F. Thomashow, Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance, Science 280 (1998) 104–106.

[11]

M. Kasuga, Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, K. Shinozaki, Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nat. Biotechnol. 17 (1999) 287–291.

[12]

J.H. Ko, S.H. Yang, K.H. Han, Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis, Plant J. 47 (2006) 343–355.

[13]

W.X. Li, Y. Oono, J. Zhu, X.J. He, J.M. Wu, K. Iida, X.Y. Lu, X. Cui, H. Jin, J.K. Zhu, The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance, Plant Cell 20 (2008) 2238–2251.

[14]

D. Singh, A. Laxmi, Transcriptional regulation of drought response: a tortuous network of transcriptional factors, Front. Plant Sci. 6 (2015) 895.

[15]

Y. Chu, X. Su, Q. Huang, X. Zhang, Patterns of DNA sequence variation at candidate gene loci in black poplar (Populus nigra L.) as revealed by single nucleotide polymorphisms, Genetica 137 (2009) 141–150.

[16]

I.S. Møller, M. Gilliham, D. Jha, G.M. Mayo, S.J. Roy, J.C. Coates, J. Haseloff, M. Tester, Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis, Plant Cell 21 (2009) 2163–2178.

[17]

S. Svistoonoff, A. Creff, M. Reymond, C. Sigoillot-Claude, L. Ricaud, A. Blanchet, L. Nussaume, T. Desnos, Root tip contact with low-phosphate media reprograms plant root architecture, Nat. Genet. 39 (2007) 792–796.

[18]

H. Yu, X. Chen, Y.Y. Hong, Y. Wang, P. Xu, S.D. Ke, H.Y. Liu, J.K. Zhu, D.J. Oliver, C.B. Xiang, Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density, Plant Cell 20 (2008) 1134–1151.

[19]

T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff, V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. Huminiecki, A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mongin, R. Pettett, M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. Smith, W. Spooner, A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. Vastrik, M. Clamp, The Ensembl genome database project, Nucleic Acids Res. 1 (2002) 38–41.

[20]

K.A. Frazer, L. Pachter, A. Poliakov, E.M. Rubin, I. Dubchak, VISTA: computational tools for comparative genomics, Nucleic Acids Res. 32 (2004) 273–279.

[21]

A. Mathelier, O. Fornes, D.J. Arenillas, C. Chen, G. Denay, J. Lee, W. Shi, C. Shyr, G. Tan, R. Worsley-Hunt, A.W. Zhang, F. Parcy, B. Lenhard, A. Sandelin, W.W. Wasserman, JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles, Nucleic Acids Res. 44 (2016) 110–115.

[22]

I. Ovcharenko, G.G. Loots, B.M. Giardine, M. Hou, J. Ma, R.C. Hardison, L. Stubbs, W. Miller, Mulan: multiple-sequence local alignment and visualization for studying function and evolution, Genome Res. 15 (2005) 184–194.

[23]

V. Matys, TRANSFAC(R): transcriptional regulation, from patterns to profiles, Nucleic Acids Res. 31 (2003) 374–378.

[24]

K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol. 30 (2013) 2725–2729.

[25]

J.J. Russo, R.A. Bohenzky, M.C. Chien, J. Chen, M. Yan, D. Maddalena, J.P. Parry, D. Peruzzi, I.S. Edelman, Y. Chang, P.S. Moore, Nucleotide sequence of the Kaposi sarcoma-associated herpes virus (HHV8), Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 14862–14867.

[26]

N. Saitou, M. Imanishi, Relative efficiencies of the Fitch–Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic reconstructions in obtaining the correct tree, Mol. Biol. Evol. 6 (1989) 514–525.

[27]

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, Evolution 39 (1985) 783–791.

[28]

Y. Uga, K. Sugimoto, S. Ogawa, J. Rane, M. Ishitani, N. Hara, Y. Kitomi, Y. Inukai, K. Ono, N. Kanno, H. Inoue, H. Takehisa, R. Motoyama, Y. Nagamura, J. Wu, T. Matsumoto, T. Takai, K. Okuno, M. Yano, Control of root system architecture by DEEPERROOTING1 increases rice yield under drought conditions, Nat. Genet. 45 (2013) 1097–1102.

[29]

S. Yokoi, F.J. Quintero, B. Cubero, M.T. Ruiz, R.A. Bressan, P.M. Hasegawa, P.M. Pardo, Differential expression and function of Arabidopsis thaliana NHXNa+/H+ antiporters in the salt stress response, Plant J. 30 (2002) 529–539.

[30]

C. Zorb, S. Schmitt, A. Neeb, S. Karl, M. Linder, S. Schubert, The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by specific adaptation, Plant Sci. 167 (2004) 91–100.

[31]

A. Fukuda, A. Nakamura, A. Tagiri, H. Tanaka, A. Miyao, H. Hirochika, Y. Tanaka, Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice, Plant Cell Physiol. 45 (2004) 146–159.

[32]

B. Zhao, R. Liang, L. Ge, W. Li, H. Xiao, H. Lin, K. Ruan, Y. Jin, Identification of drought-induced micro RNAs in rice, Biochem. Biophys. Res. Commun. 354 (2007) 585–590.

[33]

J.G. Dubouzet, Y. Sakuma, Y. Ito, E. Dubouzet, S. Miura, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki, OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, high-, salt-and cold-responsive gene expression, Plant J. 33 (2003) 751–763.

[34]

Q. Liu, M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, K. Shinozaki, Two transcription factors, DREB1 and DREB2, with an EREBP/AP2DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis, Plant Cell 10 (1998) 1391–1406.

[35]

S. Morran, O. Eini, T. Pyvovarenko, B. Parent, R. Singh, A. Ismagul, S. Eilby, N. Shirley, P. Langridge, S. Lopato, Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors, Plant Biotechnol. J. 9 (2011) 230–249.

[36]

C. Li, J. Lv, X. Zhao, X. Ai, X. Zhu, M. Wang, S. Zhao, G. Xia, TaCHP: a wheat zinc finger protein gene own-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance, Plant Physiol. 154 (2010) 211–221.

[37]

J. Wang, Q. Li, X. Mao, A. Li, R. Jing, Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis, Int. J. Biol. Sci. 12 (2016) 257–269.

[38]

A. Karaba, S. Dixit, R. Greco, A. Aharoni, K.R. Trijatmiko, N. Marsch-Martinez, A. Krishnan, K.N. Nataraja, M. Udayakumar, A. Pereira, Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15270–15275.

[39]

Y. Tang, M. Liu, S. Gao, Z. Zhang, X. Zhao, C. Zhao, F. Zhang, X. Chen, Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco, Physiol. Plant. 144 (2012) 210–224.

[40]

K. Kikuchi, M. Ueguchi-Tanaka, K.T. Yoshida, Y. Nagato, M. Matsusoka, H.Y. Hirano, Molecular analysis of the NAC gene family in rice, Mol. Gen. Genet. 262 (2000) 1047–1051.

[41]

H.Y. Du, Y.Z. Shen, Z.J. Huang, Function of the wheat TaSIP gene in enhancing drought and salt tolerance in transgenic Arabidopsis and rice, Plant Mol. Biol. 81 (2013) 417–429.

[42]

Z.H. Ren, J.P. Gao, L.G. Li, X.L. Cai, W. Huang, D.Y. Chao, M.Z. Zhu, Z.Y. Wang, S. Luan, H.X. Lin, A rice quantitative trait locus for salt tolerance encodes a sodium transporter, Nat. Genet. 37 (2005) 1141–1146.

[43]

X.G. Mao, H.Y. Zhang, S.J. Tian, X.P. Chang, R.L. Jing, TaSnRK2.4, aSNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multi stress tolerance in Arabidopsis, J. Exp. Bot. 61 (2010) 683–696.

[44]

Y.Y. Han, A.X. Li, F. Li, M.R. Zhao, W. Wang, Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation, Plant Physiol. Biochem. 54 (2012) 49–58.

[45]

W. Hu, C. Huang, X. Deng, S. Zhou, L. Chen, Y. Li, C. Wang, Z. Ma, Q. Yuan, Y. Wang, R. Cai, X. Liang, G. Yang, G. He, TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco, Plant Cell Environ. 6 (2013) 1449–1464.

[46]

Y. Xiao, X. Huang, Y. Shen, Z. Huang, A novel wheat α-amylase inhibitor gene, TaHPS, significantly improves the salt and drought tolerance of transgenic Arabidopsis, Physiol. Plant. 148 (2013) 273–283.

[47]

C. Niu, W. Wei, Q. Zhou, A. Tian, Y. Hao, W.K. Zhang, B. Ma, Q. Lin, Z.B. Zhang, J.S. Zhang, S.Y. Chen, Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants, Plant Cell Environ. 35 (2012) 1156–1170.

[48]

L. Zhang, G. Zhao, C. Xia, J. Jia, X. Liu, X. Kong, A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis, J. Exp. Bot. 63 (2012) 5873–5885.

[49]

X.N. Hou, Y.Z. Liang, X.L. He, Y.Z. Shen, Z.J. Huang, A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana, Plant Mol. Biol. Report. 31 (2013) 791–801.

[50]

C. Guo, X. Ge, H. Ma, The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages, Plant Mol. Biol. 82 (2013) 239–253.

[51]

C.S. Byrt, J.D. Platten, W. Spielmeyer, R.A. James, E.S. Lagudah, E.S. Dennis, M. Tester, R. Munns, HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1, Plant Physiol. 143 (2007) 1918–1928.

[52]

K. Kaufmann, J.M. Muino, R. Jauregui, C.A. Airoldi, C. Smaczniak, P. Krajewski, G.C. Angenent, Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in Arabidopsis flower, PLoS Biol. 7 (2009) 854–875.

[53]

R. Joshi, S.H. Wani, B. Singh, A. Bohra, Z.A. Dar, A.A. Lone, A. Pareek, S.L. Singla-Pareek, Transcription factors and plants response to drought stress: current understanding and future directions, Front. Plant Sci. 7 (2016) 1029.

[54]

R. Munns, Genes and salt tolerance: bringing them together, New Phytol. 167 (2005) 645–667.

[55]

X.F. Jin, A.S. Jiong, R.H. Peng, J.G. Liu, F. Gao, J.M. Chen, Q.H. Yao, OsAREB1, an ABRE binding protein responding to ABA and glucose has multiple functions in Arabidopsis, BMB Rep. 43 (2010) 34–39.

[56]

K. Shinozaki, K. Yamaguchi-Shinozaki, Regulatory network of gene expression in the drought and cold stress responses, Plant Biol. 6 (2003) 410–417.

[57]

T. Kumar, M.R. Khan, Z. Abbas, G.M. Ali, Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase gene, Mol. Biotechnol. 56 (2013) 199–209.

[58]

S. Park, J.S. Li, J.K. Pittman, G.A. Berkowitz, H.B. Yang, S. Undurraga, J. Morris, K.D. Hirschi, R.A. Gaxiola, Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 18830–18835.

[59]

D. Wang, Y. Pan, X. Zhao, L. Zhu, B. Fu, Z. Li, Genome-wide temporal–spatial gene expression profiling of drought responsiveness in rice, BMC Genomics 12 (2011) 149.

[60]

M.R. Khan, G.M. Ali, Functional evolution of cis-regulatory modules of STMADS11 superclade MADS-box genes, Plant Mol. Biol. 83 (2013) 489–506.

[61]

V. Gotea, A. Visel, J.M. Westlund, M. Nobrega, L. Pennacchio, I. Ovcharenko, Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers, Genome Res. 20 (2010) 565–577.

The Crop Journal
Pages 195-206
Cite this article:
Khan MR, Khan I, Ibrar Z, et al. Drought-responsive genes expressed predominantly in root tissues are enriched with homotypic cis-regulatory clusters in promoters of major cereal crops. The Crop Journal, 2017, 5(3): 195-206. https://doi.org/10.1016/j.cj.2016.10.001

260

Views

3

Downloads

11

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 12 July 2016
Revised: 06 October 2016
Accepted: 21 October 2016
Published: 13 November 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return