AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Transposon-based genetic diversity assessment in wild and cultivated barley

Surinder Singha,b,1,2Prabhjot Singh Nandhaa,1Jaswinder Singha( )
Department of Plant Science, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
Department of Plant Sciences, University of Saskatchewan, 51 campus drive, Saskatoon, SK S7N 5A8, Canada

1 Both these authors contributed equally as first authors.

2 Current address.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Transposable element-based molecular markers can be utilized to investigate genetic diversity and to create genetic linkage maps. In this study, Class I and class II transposons were employed to obtain a comparative account of genetic diversity between wild and cultivated barley genotypes. Three types of PCR-based techniques were used: IMP (Inter MITE Polymorphism), IRAP (Inter-Retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism). Specific primer pairs for IMP, IRAP, and REMAP detected a total of 200 bands with an average of 20 bands per marker. The mean polymorphic information content (PIC) and discrimination power (D) values in all 47 genotypes from these three types of transposon-based polymorphisms were 0.910 and 0.935, respectively. Unweighted Pair Group Method with Arithmetic mean (UPGMA)-based cluster analysis classified all 47 genotypes, both wild and cultivated, into separate groups consistent with their geographical origins. Sequencing followed by chromosome location of polymorphic bands enables precise gene introgression from wild gene pool to cultivated barley. The highly polymorphic nature of these marker systems makes them suitable for use in varietal identification and MAS-based breeding programs in barley and other cereals.

References

[1]

R. Kalendar, A.J. Flavell, T.H. Ellis, T. Sjakste, C. Moisy, A.H. Schulman, Analysis of plant diversity with retrotransposon-based molecular markers, Heredity 106 (2011) 520-530.

[2]

A. Suoniemi, J. Tanskanen, A.H. Schulman, Gypsy-like retrotransposons are widespread in the plant kingdom, Plant J. 13 (1998) 699-705.

[3]

D.J. Finnegan, Transposable elements, Curr. Opin. Genet. Dev. 2 (1992) 861-867.

[4]

J.L. Bennetzen, Transposable element contributions to plant gene and genome evolution, Plant Mol. Biol. 42 (2000) 251-269.

[5]

C. Feschotte, Plant transposable elements: where genetics meets genomics, Nat. Rev. Genet. 3 (2002) 329-341.

[6]

N. Roy, J.Y. Choi, S.I. Lee, N.S. Kim, Marker utility of transposable elements for plant genetics, breeding, and ecology: a review, Genes Genom. 37 (2015) 141-151.

[7]

R. Waugh, K. McLean, A.J. Flavell, S.R. Pearce, A. Kumar, B.B. Thomas, W. Powell, Genetic distribution of bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP), Mol. Gen. Genet. 253 (1997) 687-694.

[8]

T.H.N. Ellis, S.J. Poyser, M.R. Knox, A.V. Vershinin, M.J. Ambrose, Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea, Mol. Gen. Genet. 260 (1998) 9-19.

[9]

R. Kalendar, T. Grob, M. Regina, A. Suoniemi, A. Schulman, IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques, Theor. Appl. Genet. 98 (1999) 704-711.

[10]

M. Lyons, L. Cardle, N. Rostoks, R. Waugh, A. Flavell, Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome, Mol. Gen. Genomics. 280 (2008) 275-285.

[11]

M. Mazaheri, P. Kianian, M. Mergoum, G.L. Valentini, R. Seetan, S.M. Pirseyedi, A. Kumar, Y.Q. Gu, N. Stein, M. Kubaláková, Transposable element junctions in marker development and genomic characterization of barley, Plant Genome 7 (2014)http://dx.doi.org/10.3835/plantgenome2013.10.0036.

[12]

A.J. Flavell, M.R. Knox, S.R. Pearce, T.H. Ellis, Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis, Plant J. 16 (1998) 643-650.

[13]
A.H. Schulman, A.J. Flavell, E. Paux, T.H. Ellis, The Application of LTR Retrotransposons as Molecular Markers in Plants, in: Yves Bigot (Ed.), Mobile Genetic Elements: Protocols and Genomic Applications, Methods in Molecular Biology, vol. 859, Humana Press, New York City, USA 2012, pp. 115–153.
[14]

R.Y. Chang, L.S. O'Donoughue, T.E. Bureau, Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach, Theor. Appl. Genet. 102 (2001) 773-781.

[15]

S. Singh, H.Q. Tan, J. Singh, Mutagenesis of barley malting quality QTLs with Ds transposons, Funct. Integr. Genomics 12 (2012) 131-141.

[16]

T.E. Bureau, S.R. Wessler, Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants, Plant Cell 6 (1994) 907-916.

[17]

R. Kalendar, J. Tanskanen, S. Immonen, E. Nevo, A.H. Schulman, Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 6603-6607.

[18]

P.S. Nandha, J. Singh, Comparative assessment of genetic diversity between wild and cultivated barley using gSSR and EST-SSR markers, Plant Breed. 133 (2014) 28-35.

[19]

S. Singh, J. Singh, Sequence-based genetic mapping of Ds-tagged insertions to characterize malting-related traits in barley, Crop J. (2016) http://dx.doi.org/10.1016/j.cj.2016.07.003.

[20]

Y.Q. Gu, D. Coleman-Derr, X.Y. Kong, O.D. Anderson, Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes, Plant Physiol. 135 (2004) 459-470.

[21]

X.Y. Kong, Y.Q. Gu, F.M. You, J. Dubcovsky, O.D. Anderson, Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat, Plant Mol. Biol. 54 (2004) 55-69.

[22]

F. Sabot, P. Sourdille, M. Bernard, Advent of a new retrotransposon structure: the long form of the Veju elements, Genetica 125 (2005) 325-332.

[23]

A. Porceddu, E. Albertini, G. Barcaccia, G. Marconi, F.B. Bertoli, F. Veronesi, Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L, Mol. Gen. Genomics. 267 (2002) 107-114.

[24]

S.M. Tam, C. Mhiri, A. Vogelaar, M. Kerkveld, S.R. Pearce, M.A. Grandbastien, Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR, Theor. Appl. Genet. 110 (2005) 819-831.

[25]

C. Vitte, T. Ishii, F. Lamy, D. Brar, O. Panaud Genomic, Paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.), Mol. Gen. Genomics. 272 (2004) 504-511.

[26]

A.H. Schulman, A.J. Flavell, T.H. Ellis, The application of LTR retrotransposons as molecular markers in plants, Methods Mol. Biol. 260 (2004) 145-173.

[27]

N.H. Syed, A.J. Flavell, Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions, Nat. Protoc. 1 (2006) 2746-2752.

[28]

R. Kalendar, A.H. Schulman, IRAP and REMAP for retrotransposon-based genotyping and fingerprinting, Nat. Protoc. 1 (2006) 2478-2484.

[29]

C.J. Branco, E.A. Vieira, G. Malone, M.M. Kopp, E. Malone, A. Bernardes, C.C. Mistura, F.I. Carvalho, C.A. Oliveira, IRAP and REMAP assessments of genetic similarity in rice, J. Appl. Genet. 48 (2007) 107-113.

[30]

Z. Lippman, A.V. Gendrel, M. Black, M.W. Vaughn, N. Dedhia, W. Richard McCombie, K. Lavine, V. Mittal, B. May, K.D. Kasschau, J.C. Carrington, R.W. Doerge, V. Colot, R. Martienssen, Role of transposable elements in heterochromatin and epigenetic control, Nature 430 (2004) 471-476.

[31]

H. Budak, R.C. Shearman, I. Parmaksiz, I. Dweikat, Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs, Theor. Appl. Genet. 109 (2004) 280-288.

[32]

H. Ikegami, H. Nogata, K. Hirashima, M. Awamura, T. Nakahara, Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers, Genet. Resour. Crop Evol. 56 (2009) 201-209.

[33]

M. Biswas, M.N.R. Baig, Y.J. Cheng, X.X. Deng, Retro-transposon based genetic similarity within the genus citrus and its relatives, Genet. Resour. Crop. Evol. 57 (2010) 963-972.

[34]

A.M. Casa, C. Brouwer, A. Nagel, L. Wang, Q. Zhang, S. Kresovich, S.R. Wessler, The MITE family Heartbreaker (Hbr): molecular markers in maize, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 10083-10089.

The Crop Journal
Pages 296-304
Cite this article:
Singh S, Nandha PS, Singh J. Transposon-based genetic diversity assessment in wild and cultivated barley. The Crop Journal, 2017, 5(4): 296-304. https://doi.org/10.1016/j.cj.2017.01.003

253

Views

2

Downloads

16

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 26 October 2016
Revised: 12 January 2017
Accepted: 20 January 2017
Published: 08 March 2017
© 2017 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return