AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genome-wide association mapping of vitamins B1 and B2 in common wheat

Jieyun LiaJindong LiuaWei'e WenaPingzhi ZhangcYingxiu WancXianchun XiaaYan Zhanga( )Zhonghu Hea,b( )
Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, Beijing 100081, China
International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, Anhui, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Vitamin B is essential for maintaining normal life activities in humans and animals who have to intake the microelement from the outside, especially from cereal products. In the present study 166 Chinese and foreign wheat cultivars planted in two environments were characterized for variation in vitamin B1 and B2 contents. A genome-wide association study (GWAS) using the wheat 90K SNP assay identified 17 loci for vitamin B1 and 7 for vitamin B2 contents. Linear regression analysis showed a significantly positive correlation of the number of favorable alleles with vitamin B1 and B2 contents. Marker-trait associations (MTAs) at IWB43809 (6AS, 0cM) and IWB69903 (6AS, 13cM) were new and stable, and significantly associated with vitamin B1 content across two environments. The loci identified in this study and associated SNP markers could be used for improvement of vitamin B1 and B2 contents to obtain superior quality along with grain yield in wheat.

References

[1]

G.E. Gibson, J.A. Hirsch, P. Fonzetti, B.D. Jordan, R.T. Cirio, J. Elder, Vitamin B1 (thiamin) and dementia, J. Cereal Sci. 1367 (2016) 21–30.

[2]

J.L. Rodriguez, N. Qizilbash, J. Lopez-Arrieta, Thiamin for alzheimer's disease, Cochrane Database Syst. Rev. 272 (2001), CD001498.

[3]
M. Buijssen, J. Eeuwijk, N.M. Vonk, Literature search andreview related to specific preparatory work in theestablishment of dietary reference values for riboflavin, EFSASupporting Publications, 11, 2014, pp. 245–258.
[4]

Y.S. Yoon, S.Y. Jung, X.H. Zhang, S.J. Ogino, E.L. Giovannucci, E.Y. Cho, Vitamin B2 intake and colorectal cancer risk: results from the nurses' health study and the health professionals follow–up study cohort, Int. J. Cancer 139 (2016) 996–1008.

[5]

P.M. Keagy, B. Borensterin, P. Ranum, M.A. Connor, K. Lorena, W.E. Hobbs, G. Hills, A.L. Bachman, W.A. Boyd, K. Kulp, Natural levels of nutrients in commercially milled wheat flours, Cereal Chem. 57 (1980) 59–65.

[6]

P.M. Ranum, F.F. Barrett, R.J. Loewe, K. Kulp, Nutrient levels in internationally milled wheat flours, Cereal Chem. 57 (1980) 361–366.

[7]

K.R. Davis, R.F. Cain, L.J. Peters, D.L. Tourneau, J. McGinnis, Evaluation of the nutrient composition of wheat Ⅱ. Proximate analysis, thiamin, riboflavin, niacin and pyridoxine, Cereal Chem. 58 (1981) 116–120.

[8]

F. Batifoulier, M.A. Verny, E. Chanliaud, C. Rémésy, C. Demigné, Variability of B vitamin concentrations in wheat grain, milling fractions and bread products, Eur. J. Agron. 25 (2006) 163–169.

[9]

P.R. Shewry, F.V. Schaik, C. Ravel, G. Charmet, M. Rakszegi, Z. Bedo, J.L. Ward, Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain, J. Agric. Food Chem. 59 (2011) 10564–10571.

[10]

M.T. Hamblin, E.S. Buckler, J.K. Jannink, Population genetics of genomics–based crop improvement methods, Trends Genet. 27 (2011) 98–106.

[11]

C.S. Zhu, M. Gore, E.S. Buckler, J.M. Yu, Status and prospects of association mapping in plants, Plant Genome 1 (2008) 5–20.

[12]

Q. Ain, A. Rasheed, A. Anwar, T. Mahmood, M. Imtiaz, T. Mahmood, X.C. Xia, Z.H. He, U.M. Quraishi, Genome–wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan, Front. Plant Sci. 6 (2015) 743–756.

[13]

Y. Dong, Y. Zhang, A. Rasheed, Y.G. Xiao, L.P. Fu, J. Yan, J.D. Liu, W.E. Wen, Y. Zhang, R.L. Jing, X.C. Xia, Z.H. He, Genome–wide association for stem water soluble carbohydrates in bread wheat, PLoS One 11 (2016) e0164293.

[14]

M. Maccaferri, J.L. Zhang, P. bulli, Z. Abate, S. Chao, D. Cantu, E. Bossolini, X.M. Chen, M. Pumphrey, J. Dubcovsky, A genome–wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.), G3: Genes Genom. Genet. 5 (2015) 449–465.

[15]

E.S. Lagudah, R. Appels, A.H.D. Brown, The NorD3 locus of Triticum tauschii: natural variation and linkage to markers in chromosome 5, Genome 34 (1991) 387–395.

[16]

S.C. Wang, D.B. Wong, K. Forrest, A. Allen, S.M. Chao, B.E. Huang, Characterization of polyploid wheat genomic diversity using a high–density 90,000 single nucleotide polymorphism array, Plant Biotechnol. J. 12 (2014) 787–796.

[17]

S. Ndaw, M. Bergaentzle, W.D. Aoude, C. Hasselmann, Extraction procedures for the liquid chromatographic determination of thiamin, riboflavin and vitamin B6 in foodstuffs, Food Chem. 71 (2000) 129–138.

[18]

F. Arella, S. Lahely, J.B. Bourguignon, C. Hasselmann, Liquid chromatographic determination of vitamins B1 and B2 in foods: a collaborative study, Food Chem. 56 (1996) 81–86.

[19]

C.Y. Lin, F.R. Allaire, Heritability of a linear combination of traits, Theor. Appl. Genet. 51 (1977) 1–3.

[20]

J.K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using multilocus genotype data, Genetics 155 (2000) 945–959.

[21]

G. Evanno, S. Regnaut, J. Goudet, Detecting the number of clusters of individuals using the software structure: a simulation study, Mol. Ecol. 14 (2005) 2611–2620.

[22]

D.Y. Kong, Y.X. Zhu, H.L. Wu, X.D. Cheng, H. Liang, H.Q. Ling, AtTHIC, a gene involved in thiamin biosynthesis in Arabidopsis thaliana, Cell Res. 18 (2008) 566–576.

[23]

I. Ajjawi, Y. Tsegaye, D. Shintani, Determination of the genetic, molecular, and biochemical basis of the Arabidopsis thaliana thiamin auxotroph th1, Arch. Biochem. Biophys. 459 (2007) 107–114.

[24]

F.J. Sandoval, S. Roje, F.M.N. An, Hydrolase is fused to a riboflavin kinase homolog in plants, J. Biol. Chem. 280 (2005) 38337–38345.

[25]

M. Kriek, F. Martins, M.R. Challand, A. Croft, P.L. Roach, Thiamine biosynthesis in Escherichia coli: identification of the intermediate and by–products derived from tyrosine, Angew. Chem.-Int. Edit. 46 (2007) 9223–9226.

[26]

E. Settembre, T.P. Begley, S.E. Ealick, Structural biology of enzymes of the thiamin biosynthesis pathway, Curr. Opin. Struct. Biol. 13 (2003) 739–747.

[27]

Y. Zhang, S.V. Taylor, H.J. Chiu, T.P. Begley, Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis, J. Bacteriol. 179 (1997) 3030–3035.

[28]

G. Richter, M. Fischer, C. Krieger, S. Eberhardt, H. Luttgen, I. Gerstenschlager, A. Bacher, Biosynthesis of riboflavin: characterization of the bifunctional deaminase–reductase of Escherichia coli and Bacillus subtilis, J. Bacteriol. 179 (1997) 2022–2028.

[29]

T.P. Begley, D.M. Downs, S.E. Ealick, F.W. McLafferty, L.A.P. Van, S. Taylor, N. Campobasso, H.J. Chiu, C. Kinsland, J.J. Reddick, J. Xi, Thiamin biosynthesis in prokaryotes, Arch. Microbiol. 171 (1999) 293–300.

[30]

D.A. Rodionov, A.G. Vitreschak, A.A. Mironov, M.S. Gelfand, Comparative genomics of thiamin biosynthesis in prokaryotes, J. Biol. Chem. 277 (2002) 48949–48959.

[31]

K. Nosaka, Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 72 (2006) 30–40.

[32]

P.C. Dorrestein, H.L. Zhai, S.V. Taylor, F.W. McLafferty, T.P. Begley, The biosynthesis of the thiazole phosphate moiety of thiamin (vitamin B1): the early steps catalyzed by thiazole synthase, J. Am. Chem. Soc. 126 (2004) 3091–3096.

[33]

M. Touchon, C. Hoede, O. Tenaillon, V. Barbe, S. Baeriswyl, P. Bidet, E. Bingen, S. Bonacorsi, C. Bouvet, A. Calteau, H. Calteau, O. Clermont, S. Cruveiller, A. Danchin, M. Diard, C. Dossat, M.E. Karoui, E. Frapy, L. Garry, J.M. Ghigo, A.M. Gilles, J. Johnson, C.L. Bouguenec, M. Lescat, S. Mangenot, V. Martinez-Jehanne, I. Matic, X. Nassif, S. Oztas, M.A. Petit, C. Pichon, Z. Rouy, C.S. Ruf, D. Scheider, J. Tourret, B. Vacherie, D. Vallenet, C. Medigue, E.P. Rocha, E. Denamur, Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths, PLoS Genet. 5 (2009) e1000344.

[34]

W.N. Zhao, X.D. Cheng, Z.A. Huang, H.J. Fan, H.L. Wu, H.Q. Ling, Tomato LeTHIC is an Fe–requiring HMP–P synthase involved in thiamin synthesis and regulated by multiple factors, Plant Cell Physiol. 52 (2011) 967–982.

[35]

M. Fischer, W. Romisch, B. IIIarionov, W. Eisenreich, A. Bacher, Structures and reaction mechanisms of riboflavin synthases of eubacterial and archaeal origin, Biochem. Soc. Trans. 33 (2005) 780–784.

[36]

J.S. Ren, M. Kotaka, M. Lockyer, H.K. Lamb, A.R. Hawkins, D.K. Stammers, GTP cyclohydrolase Ⅱ structure and mechanism, J. Biol. Chem. 280 (2005) 36912–36919.

[37]

Y.S. Koh, J. Choih, J.H. Lee, J.H. Roe, Regulation of the ribA gene encoding GTP cyclohydrolase Ⅱ by the soxRS locus in Escherichia coli, Mol Gen Genet 251 (1996) 591–598.

[38]

O. Oltmanns, A. Bacher, Biosynthesis of riboflavine in Saccharomyces cerevisiae: the role of genes rib 1 and rib 7, J. Bacteriol. 110 (1972) 818–822.

[39]

H.S. Balyan, P.K. Gupta, S. Kumar, R. Dhariwal, V. Jaiswal, S. Tyagi, P. Agarwal, V. Gahlaut, S. Kumari, Genetic improvement of grain protein content and other health-related constituents of wheat grain, Plant Breed. 132 (2013) 446–457.

The Crop Journal
Pages 263-270
Cite this article:
Li J, Liu J, Wen W, et al. Genome-wide association mapping of vitamins B1 and B2 in common wheat. The Crop Journal, 2018, 6(3): 263-270. https://doi.org/10.1016/j.cj.2017.08.002

252

Views

3

Downloads

25

Crossref

N/A

Web of Science

28

Scopus

1

CSCD

Altmetrics

Received: 20 June 2017
Revised: 15 August 2017
Accepted: 14 September 2017
Published: 04 October 2017
© 2017 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return