PDF (1.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Wheat breeding in the hometown of Chinese Spring

Dengcai Liu()Lianquan ZhangMing HaoShunzong NingZhongwei YuanShoufen DaiLin HuangBihua WuZehong YanXiujin LanYouliang Zheng
Triticeae Research Institute, Chengdu Campus of Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

The common wheat landrace Chinese Spring (CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosomes. Based on this, a standard karyotype and nomenclature system was developed for wheat chromosomes that allowed wheat researchers to analyze and manipulate the wheat genome with unprecedented precision and efficiency. Nevertheless, not much is known about the utilization of CS at its hometown, Chengdu in Sichuan province, during early wheat breeding activity. In this review, we follow the speculation that CS is a selection from the Cheng-du-guang-tou (CDGT) landrace. We provide a description of how CDGT became a founder landrace for wheat breeding activities in early times. We show that CDGT-derived varieties were reinforced genetically by crosses to six more exotic parents. These varieties remained the major elite cultivar for several decades. Later, synthetic hexaploid wheats were introduced into the breeding program, firstly using those from CIMMYT and later using materials produced with local tetraploid wheat and goat grass. Finally, we discuss the strategies and future directions to improve wheat yield and resistance through an expanded genetic basis, especially by recapturing lost genetic variations from landraces and related wild species, a process that may set an example for wheat breeders in China and elsewhere.

References

[1]

H. Kihara, Discovery of the DD-analyser, one of the ancestors of Triticum vulgare, Agric. Hortic. 19 (1944) 889–890.

[2]

E. McFadden, E. Sears, The artificial synthesis of Triticum spleta, Rec. Genet. Soc. Am. 13 (1944) 26–27.

[3]

S.X. Huang, A. Sirikhachornkit, X.J. Su, J. Faris, B. Gill, R. Haselkorn, P. Gornicki, Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 8133–8138.

[4]

Y.Z. Zhang, The ancient crops in Xinjiang, Agric, Archaeol. (1) 3 (1983) 122–126 (in Chinese).

[5]

X.S. Zeng, On the expansion of wheat in ancient China, J. Chin. Dietary Cult. 1 (2005) 99–133 (in Chinese with English abstract).

[6]

A. Betts, P.W. Jia, J. Dodson, The origins of wheat in China and potential pathways for its introduction: a review, Quat. Int. 348 (2014) 158–168.

[7]

S.B. Jin, Wheat varieties and their pedigrees in China, China Agriculture Press, Beijing, China, 1983 (in Chinese).

[8]
C. Yen, M.C. Luo, J.L. Yang, The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu-guang-tou and other landraces of the white wheat complex from China, in: T.E. Miller, R.M.D. Koebner (Eds.), Proceedings of the 7th International Wheat Genetics Symposium, July 13–19, 1988, Inst. Plant Science Research, Cambridge Laboratory, Trumpington, Cambridge, UK 1988, pp. 175–179.
[9]

M.C. Luo, C. Yen, J.L. Yang, Crossability percentages of bread wheat landraces from Sichuan Province, China with rye, Euphytica 61 (1992) 1–7.

[10]

Y.L. Zheng, M.C. Luo, C. Yen, J.L. Yang, Chromosome location of a new crossability gene in common wheat, Wheat Inf. Serv. 75 (1992) 36–40.

[11]
D. Mettin, W. Bluthner, G. Schlegel, Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations, in: E.R. Sears, L.M.S. Sears (Eds.), Proceedings of the Fourth International Wheat Genetics Symposium, August 6–11, 1973, College of Agriculture, University of Missouri, Agricultural Experiment Station 1973, pp. 179–184.
[12]
F.J. Zeller, 1B/1R wheat–rye chromosome substitutions and translocations, in: E.R. Sears, L.M.S. Sears (Eds.), Proceedings of the Fourth International Wheat Genetics Symposium, August 6–11, 1973, College of Agriculture, University of Missouri, Agricultural Experiment Station 1973, pp. 209–221.
[13]

P.D. Chen, L.L. Qi, B. Zhou, S.Z. Zhang, D.J. Liu, Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew, Theor. Appl. Genet. 91 (1995) 1125–1128.

[14]

A.Z. Cao, L.P. Xing, X.Y. Wang, X.M. Yang, W. Wang, Y.L. Sun, C. Qian, J.L. Ni, Y.P. Chen, D.J. Liu, X.E. Wang, P.D. Chen, Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 7727–7732.

[15]

R.W. Ward, Z.L. Yang, H.S. Kim, C. Yen, Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia, Theor. Appl. Genet. 96 (1998) 312–318.

[16]

E.R. Sears, T.E. Miller, The history of Chinese Spring wheat, Cereal Res. Commu. (1985) 261–263.

[17]

W.O. Backhouse, Note on the inheritance of crossability, J. Genet. 6 (1916) 91–94.

[18]

E.R. Sears, Cytogenetic studies with polyploid species of wheat. Ⅰ. Chromosomal aberrations in the progeny of a haploid of Triticum vulgare, Genetics 24 (1939) 509–523.

[19]

E.R. Sears, Genetic control of chromosome pairing in wheat, Annu. Rev. Genet. 10 (1976) 31–51.

[20]

M. Liu, J. Stiller, K. Holušová, J. Vrána, D.C. Liu, J. Doležel, C.J. Liu, Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat, Sci. Rep. 6 (2016) 36398.

[21]

D.C. Liu, Y.L. Zheng, X.J. Lan, Utilization of wheat landrace Chinese Spring in breeding, Sci. Agric. Sin. 36 (2003) 1383–1389 (in Chinese with English abstract).

[22]

Q.S. Zhuang, Chinese Wheat Improvement and Pedigree Analysis, China Agriculture Press, Beijing, 2002 (in Chinese).

[23]

Y. Zhou, H.Z. Zhu, S.B. Cai, Z.H. He, X.K. Zhang, X.C. Xia, G.S. Zhang, Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000, Euphytica 157 (2007) 465–473.

[24]

Y.D. Zhou, A survey of the Fan-6 and its sisters, excellent wheat germplasms for high yield and resistance to stripe rust, J. Sichuan Agric. Univ. 10 (1992) 682–688 (in Chinese with English abstract).

[25]

C. Yen, History and prospect of study on wheat breeding of fifty years in Sichuan, J. Sichuan Agric. Univ. 17 (1999) 108–113 (in Chinese).

[26]

C. Yen, Summary of wheat cross breeding in the past 20years, Sichuan Agric. Sci. Technol. 4 (1973) 4–20 (in Chinese).

[27]

B.E. Huang, A.W. George, K.L. Forrest, A. Kilian, M.J. Hayden, M.K. Morell, C.R. Cavanagh, A multiparent advanced generation inter-cross population for genetic analysis in wheat, Plant Biotechnol. J. 10 (2012) 826–839.

[28]

C. Uauy, Wheat genomics comes of age, Curr. Opin. Plant Biol. 36 (2017) 142–148.

[29]

P. Borrill, N. Adamski, C. Uauy, Genomics as the key to unlocking the polyploid potential of wheat, New Phytol. 208 (2015) 1008–1022.

[30]

K.V. Krasileva, H.A. Vasquez-Gross, T. Howell, P. Bailey, F. Paraiso, L. Clissold, J. Simmonds, R.H. Ramirez-Gonzalez, X.D. Wang, P. Borrill, C. Fosker, S. Ayling, A.L. Phillips, C. Uauy, J. Dubcovsky, Uncovering hidden variation in polyploid wheat, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) E913–E921.

[31]

M. Hao, J.T. Luo, D.Y. Zeng, L. Zhang, S.Z. Ning, Z.W. Yuan, Z.H. Yan, H.G. Zhang, Y.L. Zheng, C. Feuillet, F. Choulet, Y. Yen, L.Q. Zhang, D.C. Liu, QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization, G3-Genes Genomes Genet. 4 (2014) 1943–1953.

[32]
D.C. Liu, H.G. Zhang, L.Q. Zhang, Z.W. Yuan, M. Hao, Y.L. Zheng, Distant hybridization: a tool for interspecific manipulation of chromosomes, in: A. Pratap, J. Kumar (Eds.), Alien Gene Transfer in Crop Plants, Vol. 1, Springer, New York 2014, pp. 25–42.
[33]

A. Mujeeb-Kazi, V. Rosas, S. Roldan, Conservation of the genetic variation of Triticum tauschii Coss. Schmalh. Aegilops squarrosa auct. non L. in synthetic hexaploid wheats T. turgidum L. s. lat. × T. tauschii; 2n=6x=42, AABBDD and its potential utilization for wheat improvement, Genet. Resour. Crop. Evol. 43 (1996) 129–134.

[34]

S. Dreisigacker, M. Kishii, J. Lage, M. Warburton, Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement, Crop Pasture Sci. 59 (2008) 413–420.

[35]

X.J. Lan, D.C. Liu, Z.R. Wang, Inheritance in synthetic hexaploid wheat ‘RSP’ of sprouting tolerance derived from Aegilops tauschii Cosson, Euphytica 95 (1997) 321–323.

[36]

L.Q. Zhang, D.C. Liu, Z.H. Yan, X.J. Lan, Y.L. Zheng, Y.H. Zhou, Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat, Sci. China C Life Sci. 47 (2004) 553–561.

[37]

L.Q. Zhang, Y. Yen, Y.L. Zheng, D.C. Liu, Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines, Sex. Plant Reprod. 20 (2007) 159–166.

[38]

L.Q. Zhang, D.C. Liu, Y.L. Zheng, Z.H. Yan, S.F. Dai, Y.F. Li, Q. Jiang, Y.Q. Ye, Y. Yen, Frequent occurrence of unreduced gametes in Triticum turgidumAegilops tauschii hybrids, Euphytica 172 (2010) 285–294.

[39]

M. Hao, J.X. Chen, L.Q. Zhang, J.T. Luo, Z.W. Yuan, Z.H. Yan, B. Zhang, W.J. Chen, Y.M. Wei, H.G. Zhang, Y.L. Zheng, D.C. Liu, The genetic study utility of a hexaploid wheat DH population with non-recombinant A- and B-genomes, SpringerPlus 2 (2013) 131.

[40]

J.T. Luo, M. Hao, L. Zhang, J.X. Chen, L.Q. Zhang, Z.W. Yuan, Z.H. Yan, Y.L. Zheng, H.G. Zhang, Y. Yen, D.C. Liu, Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat, Int. J. Mol. Sci. 13 (2012) 12533–12543.

[41]

W.Y. Yang, D.C. Liu, J. Li, L.Q. Zhang, H.T. Wei, X.R. Hu, Y.L. Zheng, Z.H. He, Y.C. Zou, Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China, J. Genet. Genomics 36 (2009) 539–546.

[42]

J. Li, H.S. Wan, W.Y. Yang, Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes, J. Syst. Evol. 52 (2014) 735–742.

[43]

Y.L. Tang, C.S. Li, X.L. Wu, C. Wu, W.Y. Yang, G. Huang, X.L. Ma, Accumulation of dry matter, canopy structure and photosynthesis of synthetic hexaploid wheat-derived high yielding varieties grown in Sichuan basin, China, Sci. Agric. Sin. 47 (2014) 844–855 (in Chinese with English abstract).

[44]
D.C. Liu, M. Hao, A.L. Li, L.Q. Zhang, Y.L. Zheng, L. Mao, Allopolyploidy and interspecific hybridization for wheat improvement, in: A.S. Mason (Ed.), Polyploidy and Hybridization for Crop Improvement, CRC Press, Boca Raton, FL, USA 2016, pp. 27–52.
[45]

K. Kashkush, M. Feldman, A.A. Levy, Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat, Nat. Genet. 33 (2003) 102–106.

[46]

X. Guo, F.P. Han, Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat, Plant Cell 26 (2014) 4311–4327.

[47]

A.L. Li, S.F. Geng, L.Q. Zhang, D.C. Liu, L. Mao, Making the bread: insights from newly synthesized allohexaploid wheat, Mol. Plant 8 (2015) 847–859.

[48]

C.W. Yang, L. Zhao, H.K. Zhang, Z.Z. Yang, H. Wang, S.S. Wen, C.Y. Zhang, S. Rustgi, D. von Wettstein, B. Liu, Evolution of physiological responses to salt stress in hexaploid wheat, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 11882–11887.

[49]

Y. Han, M.M. Xin, K. Huang, Y.Y. Xu, Z.S. Liu, Z.R. Hu, Y.Y. Yao, H.R. Peng, Z.F. Ni, Q.X. Sun, Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat, New Phytol. 209 (2016) 721–732.

[50]

W.X. Yang, F.P. Yang, D. Liang, Z.H. He, X.W. Shang, X.C. Xia, Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars, Acta Agron. Sin. 34 (2008) 1109–1113 (in Chinese with English abstract).

[51]

J.R. Wang, Y.X. Liu, Y. Wang, Z.H. Chen, S. Dai, W.G. Cao, G. Fedak, X.J. Lan, Y.M. Wei, D.C. Liu, Y.L. Zheng, Genetic variation of Vp1 in Sichuan wheat accessions and its association with pre-harvest sprouting response, Genes Genom. 33 (2011) 139.

[52]

D.L. Fu, C. Uauy, A. Distelfeld, A. Blechl, L. Epstein, X.M. Chen, H. Sela, T. Fahima, J. Dubcovsky, A kinase-START gene confers temperature-dependent resistance to wheat stripe rust, Science 323 (2009) 1357–1360.

[53]

C.L. Yuan, H. Jiang, H.G. Wang, K. Li, H. Tang, X.B. Li, D.L. Fu, Distribution, frequency and variation of stripe rust resistance loci Yr10, Lr34/Yr18 and Yr36 in Chinese wheat cultivars, J. Genet. Genomics 39 (2012) 587–592.

The Crop Journal
Pages 82-90
Cite this article:
Liu D, Zhang L, Hao M, et al. Wheat breeding in the hometown of Chinese Spring. The Crop Journal, 2018, 6(1): 82-90. https://doi.org/10.1016/j.cj.2017.08.009
Metrics & Citations  
Article History
Copyright
Return