AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives

Daowen Wanga,b( )Kunpu Zhanga,bLingli DongaZhenying DongaYiwen LiaAbrar Hussaina,cHuijie Zhaib
The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal Campus, Pakistan

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Wheat is the most widely cultivated staple food crop, and multiple types of food derivatives are processed and consumed globally. Wheat grain quality (WGQ) is central to food processing and nutritional value, and is a decisive factor for consumer acceptance and commercial value of wheat cultivars. Hence, improvement in WGQ traits is top priority for both conventional and molecular wheat breeding. In this review we will focus on two important WGQ traits, grain milling and end-use, and will summarize recent progress in China. Chinese scientists have invested substantial effort in molecular genetic and genomic analysis of these traits and their effects on end-use properties. The insights and resources generated have contributed to the understanding and improvement of these traits. As high-quality genomics information and powerful genome engineering tools are becoming available for wheat, more fundamental breakthroughs in dissecting the molecular and genomic basis of WGQ are expected. China will strive to make further significant contributions to the study and improvement of WGQ in the genomics era.

References

[1]
C. Wrigley, R. Asenstorfer, I. Batey, G. Cornish, L. Day, D. Mares, K. Mrva, The biochemical and molecular basis of wheat quality, in: B.F. Carver (Ed.), Wheat Science and Trade, Iowa, USA 2009, pp. 495–520.
[2]

R. Brenchley, M. Spannagl, M. Pfeifer, G.L. Barker, R. D'Amore, A.M. Allen, N. McKenzie, M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, I. Bancroft, Y. Gu, N. Huo, M.C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. Kersey, J. Dvorak, W.R. McCombie, A. Hall, K.F. Mayer, K.J. Edwards, M.W. Bevan, N. Hall, Analysis of the bread wheat genome using whole-genome shotgun sequencing, Nature 491 (2012) 705–710.

[3]

International Wheat Genome Sequencing Consortium, A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science 345 (2014) 1251788.

[4]

International Rice Genome Sequencing Project, The map-based sequence of the rice genome, Nature 436 (2005) 793–800.

[5]

Y. Hiei, T. Komari, T. Kubo, Transformation of rice mediated by Agrobacterium tumefaciens, Plant Mol. Biol. 35 (1997) 205–218.

[6]
Y. Ishida, M. Tsunashima, Y. Hiei, Y. Komari, Wheat (Triticum aestivum L.) transformation using immature embryos, in: K. Wang (Ed.), Agrobacterium Protocols, Vol. 1, Methods in Molecular Biology, 1223, Springer Science + Business Media, New York 2015, pp. 189–198.
[7]

A.M. Kiszonas, C.F. Morris, Wheat breeding for quality: a historical review, Cereal Chem. (2017)https://doi.org/10.1094/CCHEM-05-17-0103-FI.

[8]

S. Zhai, Z. He, W. Wen, H. Jin, J. Liu, Y. Zhang, Z. Liu, X. Xia, Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat, Theor. Appl. Genet. 129 (2016) 377–394.

[9]

C. Guzmán, J.B. Alvarez, Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties, Theor. Appl. Genet. 129 (2016) 1–16.

[10]

P.R. Shewry, S.J. Hey, The contribution of wheat to human diet and health, Food Energy Secur. 4 (2015) 178–202.

[11]

M.J. Giroux, C.F. Morris, Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 6262–6266.

[12]

A.C. Hogg, T. Sripo, B. Beecher, J.M. Martin, M.J. Giroux, Wheat puroindolines interact to form friabilin and control wheat grain hardness, Theor. Appl. Genet. 108 (2004) 1089–1097.

[13]

M. Bhave, C.F. Morris, Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses, Plant Mol. Biol. 66 (2008) 205–219.

[14]

A. Nadolska-Orczyk, S. Gasparis, W. Orczyk, The determinants of grain texture in cereals, J. Appl. Genet. 50 (2009) 185–197.

[15]

I. Pasha, F.M. Anjum, C.F. Morris, Grain hardness: a major determinant of wheat quality, Food Sci. Technol. Int. 16 (2010) 511–522.

[16]

S. Shaaf, R. Sharma, F.S. Baloch, E.D. Badaeva, H. Knüpffer, B. Kilian, H. Özkan, The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny, Mol. Gen. Genomics. 291 (2016) 1259–1275.

[17]

L.Q. Xia, F. Chen, Z.H. He, X.M. Chen, C.F. Morris, Occurrence of puroindoline alleles in Chinese winter wheats, Cereal Chem. 82 (2005) 38–43.

[18]

F. Chen, Z.H. He, X.C. Xia, M. Lillemo, C.F. Morris, A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11, J. Cereal Sci. 42 (2005) 267–269.

[19]

F. Chen, Z.H. He, X.C. Xia, L.Q. Xia, X.Y. Zhang, M. Lillemo, C.F. Morris, Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars, Theor. Appl. Genet. 112 (2006) 400–409.

[20]

C. Chang, H.P. Zhang, J. Xu, W.H. Li, G.T. Liu, M.S. You, B.Y. Li, Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE, Euphytica 152 (2006) 225–234.

[21]

F. Chen, Y.X. Yu, Z.H. He, X.C. Xia, Prevalence of a novel puroindoline allele in Yunnan endemic wheats, Euphytica 156 (2007) 39–46.

[22]

J. Wang, J.Z. Sun, D.C. Liu, W.L. Yang, D.W. Wang, Y.P. Tong, A.M. Zhang, Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by Ecotilling and identification of a novel Pinb allele, J. Cereal Sci. 48 (2008) 836–842.

[23]

L. Wang, G.Y. Li, X.C. Xia, Z.H. He, P.Y. Mu, Molecular characterization of Pina and Pinb allelic variations in Xinjiang landraces and commercial wheat cultivars, Euphytica 164 (2008) 745–752.

[24]

G.Y. Li, Z.H. He, M. Lillemo, Q.X. Sun, X.C. Xia, Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars, J. Cereal Sci. 47 (2008) 510–517.

[25]

F. Chen, F.Y. Zhang, X.C. Xia, Z.D. Dong, D.Q. Cui, Distribution of puroindoline alleles in bread wheat of the Yellow and Huai Valley of China and discovery of a novel puroindoline a allele without PINA protein, Mol. Breed. 29 (2012) 371–378.

[26]

F. Chen, H. Li, D. Cui, Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.), BMC Plant Biol. 13 (2013) 125.

[27]

G.Y. Li, Z.H. He, R.J. Pena, X.C. Xia, M. Lillemoe, Q.X. Sun, Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines, J. Cereal Sci. 43 (2006) 378–386.

[28]

R. Zhang, X. Wang, P. Chen, Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa, Genome 55 (2012) 639–646.

[29]

L. Xia, H. Geng, X. Chen, Z.H. He, M. Lillemo, C.F. Morris, Silencing of puroindoline a alters the kernel texture in transgenic bread wheat, J. Cereal Sci. 47 (2008) 331–338.

[30]

Y. Li, X. Mao, Q. Wang, J. Zhang, X. Li, F. Ma, F. Sun, J. Chang, M. Chen, Y. Wang, K. Li, G. Yang, G. He, Overexpression of Puroindoline a gene in transgenic durum wheat (Triticum turgidum ssp. durum) leads to a medium-hard kernel texture, Mol. Breed. 33 (2014) 545–554.

[31]

F. Chen, B. Beecher, C.F. Morris, Physical mapping and a new variant of Puroindoline b-2 genes in wheat, Theor. Appl. Genet. 120 (2010) 745–751.

[32]

F. Chen, F.Y. Zhang, X.Y. Cheng, C.F. Morris, H.X. Xu, Z.D. Dong, K.H. Zhan, D.Q. Cui, Association of Puroindoline b-B2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of the Yellow and Huai Valleys of China, J. Cereal Sci. 52 (2010) 247–253.

[33]

F. Chen, H.X. Xu, F.Y. Zhang, X.C. Xia, Z.H. He, D.W. Wang, Z.D. Dong, K.H. Zhan, X.Y. Cheng, D.Q. Cui, Physical mapping of puroindoline b-2 genes and molecular characterization of a novel variant in durum wheat (Triticum turgidum L.), Mol. Breed. 28 (2011) 153–161.

[34]

H. Geng, B.S. Beecher, Z.H. He, A.M. Kiszonas, C.F. Morris, Prevalence of Puroindoline D1 and Puroindoline b-2 variants in U.S. Pacific Northwest wheat breeding germplasm pools, and their association with kernel texture, Theor. Appl. Genet. 124 (2012) 1259–1269.

[35]

P.R. Shewry, N.G. Halford, D. Lafiandra, Genetics of wheat gluten proteins, Adv. Genet. 49 (2003) 111–184.

[36]

J.A. Delcour, I.J. Joye, B. Pareyt, E. Wilderjans, K. Brijs, B. Lagrain, Wheat gluten functionality as a quality determinant in cereal-based food products, Annu. Rev. Food Sci. Technol. 3 (2012) 469–492.

[37]

H. Goesaert, K. Brijs, W.S. Veraverbeke, C.M. Courtin, K. Gebruers, J.A. Delcour, Wheat flour constituents: how they impact bread quality, and how to impact their functionality, Trends Food Sci. Technol. 16 (2005) 12–30.

[38]

P.W. Gras, R.S. Anderssen, M. Keentok, F. Békés, R. Appels, Gluten protein functionality in wheat flour processing: a review, Aust. J. Agric. Res. 52 (2001) 1311–1323.

[39]

F. MacRitchie, Theories of glutenin/dough systems, J. Cereal Sci. 60 (2014) 4–6.

[40]
D. Kasarda, Glutenin structure in relation to wheat quality, in: Y. Pomeranz (Ed.), Wheat Is Unique, American Association of Cereal Chemists, St. Paul, MN, USA 1989, pp. 277–302.
[41]

O.D. Anderson, F.C. Greene, The α-gliadin gene family: Ⅱ. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes, Theor. Appl. Genet. 95 (1997) 59–65.

[42]

O.D. Anderson, N. Huo, Y.Q. Gu, The gene space in wheat: the complete γ-gliadin gene family from the wheat cultivar Chinese spring, Funct. Integr. Genomics 13 (2013) 261–273.

[43]

P. Ferrante, S. Masci, R. D'Ovidio, D. Lafiandra, C. Volpi, B. Mattei, Proteomic approach to verify in vivo expression of a novel γ-gliadin containing an extra cysteine residue, Proteomics 6 (2006) 1908–1914.

[44]

S.B. Altenbach, K.M. Kothari, Omega gliadin genes expressed in Triticum aestivum cv. Butte 86: effects of post-anthesis fertilizer on transcript accumulation during grain development, J. Cereal Sci. 46 (2007) 169–177.

[45]

W.H. Vensel, C.K. Tanaka, S.B. Altenbach, Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry, Proteome Sci. 12 (2014) 8.

[46]

A. Rasheed, X. Xia, Y. Yan, R. Appels, T. Mahmood, Z.H. He, Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications, J. Cereal Sci. 60 (2014) 11–24.

[47]

R.B. Gupta, K. Khan, F. MacRitchie, Biochemical basis of flour properties in bread wheats. 1. Effects of variation in the quantity and size distribution of polymeric protein, J. Cereal Sci. 18 (1993) 23–41.

[48]

H.D. Sapirstein, B.X. Fu, Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality, Cereal Chem. 75 (1998) 500–507.

[49]

X.Z. Hu, Y.M. Wei, C. Wang, M.I.P. Kovacs, Quantitative assessment of protein fractions of Chinese wheat flours and their contribution to white salted noodle quality, Food Res. Int. 40 (2007) 1–6.

[50]

H. Jin, Z. Wang, D. Li, P. Wu, Z. Dong, C. Rong, X. Liu, H. Qin, H. Li, D. Wang, K. Zhang, Genetic analysis of chromosomal loci affecting the content of insoluble glutenin in common wheat, J. Genet. Genomics 42 (2015) 495–505.

[51]

Z. Wang, Y. Li, Y. Yang, X. Liu, H. Qin, Z. Dong, S. Zheng, K. Zhang, D. Wang, New insight into the function of wheat glutenin proteins as investigated with two series of genetic mutants, Sci. Rep. 7 (2017) 3428.

[52]

K.A. Scherf, P. Koehler, H. Wieser, Gluten and wheat sensitivities - an overview, J. Cereal Sci. 67 (2016) 2–11.

[53]

P.R. Shewry, A.S. Tatham, Improving wheat to remove celiac epitopes but retain functionality, J. Cereal Sci. 67 (2016) 12–21.

[54]

L. Shan, Ø. Molberg, I. Parrot, F. Hausch, F. Filiz, G.M. Gray, L.M. Sollid, C. Khosla, Structural basis for gluten intolerance in celiac spruce, Science 297 (2002) 2275–2279.

[55]

J.A. Tye-Din, J.A. Stewart, J.A. Dromey, T. Beissbarth, D.A. van Heel, A. Tatham, K. Henderson, S.I. Mannering, C. Gianfrani, D.P. Jewell, A.V. Hill, J. McCluskey, J. Rossjohn, R.P. Anderson, Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease, Sci. Transl. Med. (41ra51).

[56]

C.V. Ozuna, J.C. Iehisa, M.J. Giménez, J.B. Alvarez, C. Sousa, F. Barro, Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization, Plant J. 82 (2015) 794–805.

[57]

A. Baar, S. Pahr, C. Constantin, S. Scheiblhofer, J. Thalhamer, S. Giavi, N.G. Papadopoulos, C. Ebner, A. Mari, S. Vrtala, R. Valenta, Molecular and immunological characterization of Tri a 36, a low molecular weight glutenin, as a novel major wheat food allergen, J. Immunol. 189 (2012) 3018–3025.

[58]
Z.H. He, X.C. Xia, A.P.A. Bonjean, Wheat improvement in China, in: Z.H. He, A.P.A. Bonjean (Eds.), Cereals in China, CIMMYT, Mexico 2010, pp. 51–68.
[59]

P.I. Payne, L.M. Holt, A.F. Krattiger, J.M. Carrillo, Relationships between seed quality characteristics and HMW glutenin subunit composition determined using wheats grown in Spain, J. Cereal Sci. 7 (1988) 229–235.

[60]

Y. Li, X. An, R. Yang, X. Guo, G. Yue, R. Fan, B. Li, Z. Li, K. Zhang, Z. Dong, L. Zhang, J. Wang, X. Jia, H.Q. Ling, A. Zhang, X. Zhang, D. Wang, Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality, Mol. Plant 8 (2015) 332–334.

[61]

P.I. Payne, C.N. Law, E.E. Mudd, Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm, Theor. Appl. Genet. 58 (1980) 113–120.

[62]

Y.Q. Gu, J. Salse, D. Coleman-Derr, A. Dupin, C. Crossman, G.R. Lazo, N. Huo, H. Belcram, C. Ravel, G. Charmet, M. Charles, O.D. Anderson, B. Chalhoub, Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes, Genetics 174 (2006) 1493–1504.

[63]

Z. Liu, Z. Yan, Y. Wan, K. Liu, Y. Zheng, D. Wang, Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species, Theor. Appl. Genet. 106 (2003) 1368–1378.

[64]

W. Li, Y. Wan, Z. Liu, K. Liu, X. Liu, B. Li, Z. Li, X. Zhang, Y. Dong, D. Wang, Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species, Theor. Appl. Genet. 109 (2004) 1093–1104.

[65]

D. Feng, G. Xia, S. Zhao, F. Chen, Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum, Theor. Appl. Genet. 110 (2004) 136–144.

[66]

J.R. Wang, Z.H. Yan, Y.M. Wei, Y.L. Zheng, Characterization of high-molecular-weight glutenin subunit genes from Elytrigia elongate, Plant Breed. 125 (2006) 89–95.

[67]

X. Sun, S. Hu, X. Liu, W. Qian, S. Hao, A. Zhang, D. Wang, Characterization of the HMW glutenin subunits from Aegilops searsii and identification of a novel variant HMW glutenin subunit, Theor. Appl. Genet. 113 (2006) 631–641.

[68]

X. Li, Y. Zhang, L. Gao, A. Wang, K. Ji, Z. He, R. Appels, W. Ma, Y. Yan, Molecular cloning, heterologous expression, and phylogenetic analysis of a novel y-type HMW glutenin subunit gene from the G genome of Triticum timopheevi, Genome 50 (2007) 1130–1140.

[69]

Z.X. Li, X.Q. Zhang, H.G. Zhang, S.H. Cao, D.W. Wang, S.T. Hao, L.H. Li, H.J. Li, X.P. Wang, Isolation and characterization of a novel variant of HMW glutenin subunit gene from the St genome of Pseudoroegneria stipifolia, J. Cereal Sci. 47 (2008) 429–437.

[70]

S. Liu, X. Gao, G. Xia, Characterizing HMW-GS alleles of decaploid Agropyron elongatum in relation to evolution and wheat breeding, Theor. Appl. Genet. 116 (2008) 325–334.

[71]

Q.T. Jiang, J. Ma, Y.M. Wei, Y.X. Liu, X.J. Lan, S.F. Dai, Z.X. Lu, S. Zhao, Q.Z. Zhao, Y.L. Zheng, Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding, BMC Plant Biol. 12 (2012) 73.

[72]

S. Wang, Z. Yu, M. Cao, X. Shen, N. Li, X. Li, W. Ma, H. Weißgerber, F. Zeller, S. Hsam, Y. Yan, Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality, PLoS One 8 (2013) e58947.

[73]

X.H. Guo, Z.G. Bi, B.H. Wu, Z.Z. Wang, J.L. Hu, Y.L. Zheng, D.C. Liu, ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides, Gene 531 (2013) 318–325.

[74]

Q.T. Jiang, X.W. Zhang, J. Ma, L. Wei, S. Zhao, Q.Z. Zhao, P.F. Qi, Z.X. Lu, Y.L. Zheng, Y.M. Wei, Characterization of high-molecular-weight glutenin subunits from Eremopyrum bonaepartis and identification of a novel variant with unusual high molecular weight and altered cysteine residues, Planta 239 (2014) 865–875.

[75]

S. Cao, Z. Li, C. Gong, H. Xu, R. Yang, S. Hao, X. Wang, D. Wang, X. Zhang, Identification and characterization of high-molecular-weight glutenin subunits from Agropyron intermedium, PLoS One 9 (2014) e87477.

[76]

Z. Li, H. Li, G. Chen, C. Kou, S. Ning, Z. Yuan, Q. Jiang, Y. Zheng, D. Liu, L. Zhang, Characterization of a novel y-type HMW-GS with eight cysteine residues from Triticum monococcum ssp. monococcum, Gene 573 (2015) 110–114.

[77]

Z. Dong, Y. Yang, K. Zhang, Y. Li, J. Wang, Z. Wang, X. Liu, H. Qin, D. Wang, Development of a new set of molecular markers for examining Glu-A1 variants in common wheat and ancestral species, PLoS One 12 (2017) e0180766.

[78]

Z. Dong, Y. Yang, Y. Li, K. Zhang, H. Lou, X. An, L. Dong, Y.Q. Gu, O.D. Anderson, X. Liu, H. Qin, D. Wang, Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat, PLoS One 8 (2013) e74859.

[79]

C. Guzmán, L. Caballero, L.M. Martín, J.B. Alvarez, Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species, Ann. Bot. 110 (2012) 1161–1171.

[80]

Y. Li, R. Zhou, G. Branlard, J. Jia, Development of introgression lines with 18 alleles of glutenin subunits and evaluation of the effects of various alleles on quality related traits in wheat (Triticum aestivum L.), J. Cereal Sci. 51 (2010) 127–133.

[81]

H. Liu, S. Liu, G. Xia, Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass, Theor. Appl. Genet. 118 (2009) 1193–1198.

[82]

Z. Yuan, M. Liu, Y. Ouyang, X. Zeng, M. Hao, L. Zhang, S. Ning, Z. Yan, D. Liu, The detection of a de novo allele of the Glu-1Dx gene in wheat-rye hybrid offspring, Theor. Appl. Genet. 127 (2014) 2173–2182.

[83]

L. Dong, N. Huo, Y. Wang, K. Deal, D. Wang, T. Hu, J. Dvorak, O.D. Anderson, M.C. Luo, Y.Q. Gu, Rapid evolutionary dynamics in a 2.8-Mb chromosomal region containing multiple prolamin and resistance gene families in Aegilops tauschii, Plant J. 87 (2016) 495–506.

[84]

B.J. Clavijo, L. Venturini, C. Schudoma, G.G. Accinelli, G. Kaithakottil, J. Wright, P. Borrill, G. Kettleborough, D. Heavens, H. Chapman, J. Lipscombe, T. Barker, F.H. Lu, N. McKenzie, D. Raats, R.H. Ramirez-Gonzalez, A. Coince, N. Peel, L. Percival-Alwyn, O. Duncan, J. Trösch, G. Yu, D.M. Bolser, G. Namaati, A. Kerhornou, M. Spannagl, H. Gundlach, G. Haberer, R.P. Davey, C. Fosker, F.D. Palma, A.L. Phillips, A.H. Millar, P.J. Kersey, C. Uauy, K.V. Krasileva, D. Swarbreck, M.W. Bevan, M.D. Clark, An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations, Genome Res. 27 (2017) 885–896.

[85]

R. D'Ovidio, S. Masci, The low-molecular-weight glutenin subunits of wheat gluten, J. Cereal Sci. 39 (2004) 321–339.

[86]

L. Dong, X. Zhang, D. Liu, H. Fan, J. Sun, Z. Zhang, H. Qin, B. Li, S. Hao, Z. Li, D. Wang, A. Zhang, H.Q. Ling, New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat, PLoS One 5 (2010) e13548.

[87]

X. Zhang, D. Liu, W. Yang, K. Liu, J. Sun, X. Guo, Y. Li, D. Wang, H. Ling, A. Zhang, Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.), Theor. Appl. Genet. 122 (2011) 1503–1516.

[88]

X. Zhang, D. Liu, J. Zhang, W. Jiang, G. Luo, W. Yang, J. Sun, Y. Tong, D. Cui, A. Zhang, Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat, J. Exp. Bot. 64 (2013) 2027–2040.

[89]

G. Luo, X. Zhang, Y. Zhang, W. Yang, Y. Li, J. Sun, K. Zhan, A. Zhang, D. Liu, Composition, variation, expression and evolution of low-molecular-weight glutenin subunit genes in Triticum urartu, BMC Plant Biol. 15 (2015) 68.

[90]

L. Liu, T.M. Ikeda, G. Branlard, R.J. Peña, W.J. Rogers, S.E. Lerner, M.A. Kolman, X. Xia, L. Wang, W. Ma, R. Appels, H. Yoshida, A. Wang, Y. Yan, Z. He, Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat, BMC Plant Biol. 10 (2010) 124.

[91]

X. Zhang, H. Jin, Y. Zhang, D. Liu, G. Li, X. Xia, Z. He, A. Zhang, Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat, BMC Plant Biol. 12 (2012) 243.

[92]

A. Wang, L. Liu, Y. Peng, S. Islam, M. Applebee, R. Appels, Y. Yan, W. Ma, Identification of low molecular weight glutenin alleles by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in common wheat (Triticum aestivum L.), PLoS One 10 (2015) e0138981.

[93]

Y. Wang, S. Zhen, N. Luo, C. Han, X. Lu, X. Li, X. Xia, Z. He, Y. Yan, Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.), Sci. Rep. 6 (2016) 27182.

[94]

Y. Liu, Z. He, R. Appels, X. Xia, Functional markers in wheat: current status and future prospects, Theor. Appl. Genet. 125 (2012) 1–10.

[95]

P.F. Qi, Y.M. Wei, Y.W. Yue, Z.H. Yan, Y.L. Zheng, Biochemical and molecular characterization of gliadins, Mol. Biol. 40 (2006) 796–807.

[96]

O.D. Anderson, L. Dong, N. Huo, Y.Q. Gu, A new class of wheat gliadin genes and proteins, PLoS One 7 (2012) e52139.

[97]

Y. Wan, P.R. Shewry, M.J. Hawkesford, A novel family of γ-gliadin genes are highly regulated by nitrogen supply in developing wheat grain, J. Exp. Bot. 64 (2013) 161–168.

[98]

N. Huo, L. Dong, S. Zhang, Y. Wang, T. Zhu, T. Mohr, S. Altenbach, Z. Liu, J. Dvorak, O.D. Anderson, M.C. Luo, D. Wang, Y.Q. Gu, New insights into structural organization and gene duplication in a 1.75-Mb genomic region harboring the α-gliadin gene family in Aegilops tauschii, the source wheat D genome, Plant J. (2017)https://doi.org/10.1111/tpj.13675.

[99]

A.S. Tatham, P.R. Shewry, The S-poor prolamins of wheat, barley and rye: revisited, J. Cereal Sci. 55 (2012) 79–99.

[100]

T. Mita, E. Ishida, H. Matsumoto, Physicochemical studies on wheat protein foams. Ⅱ. Relationship between bubble size and stability of foams prepared with gluten and gluten components, J. Colloid Interface Sci. 64 (1978) 143–153.

[101]

H.J. Van Lonkhuijsen, R.J. Hamer, C. Schreuder, Influence of specific gliadins on the breadmaking quality of wheat, Cereal Chem. 69 (1992) 174–177.

[102]

B.G. Thewissen, I. Celus, K. Brijs, J.A. Delcour, Foaming properties of wheat gliadin, J. Agric. Food Chem. 59 (2011) 1370–1375.

[103]

J. Gil-Humanes, F. Pistón, S. Tollefsen, L.M. Sollid, F. Barro, Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 17023–17028.

[104]

S.B. Altenbach, C.K. Tanaka, B.W. Seabourn, Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour, BMC Plant Biol. 14 (2014) 393.

[105]

D.W. Wang, D. Li, J. Wang, Y. Zhao, Z. Wang, G. Yue, X. Liu, H. Qin, K. Zhang, L. Dong, D. Wang, Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes, Sci. Rep. 7 (2017) 44609.

[106]

D.D. Kasarda, E. Adalsteins, E.J. Lew, G.R. Lazo, S.B. Altenbach, Farinin: characterization of a novel wheat endosperm protein belonging to the prolamin superfamily, J. Agric. Food Chem. 61 (2013) 2407–2417.

[107]

Y.C. Kan, Y.F. Wan, F. Beaudoin, D.J. Leader, K. Edwards, R. Poole, D.W. Wang, R.A.C. Mitchell, P.R. Shewry, Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat, J. Cereal Sci. 44 (2006) 75–85.

[108]

S. De Caro, P. Ferranti, F. Addeo, G. Mamone, Isolation and characterization of avenin-like protein type B from durum wheat, J. Cereal Sci. 52 (2010) 426–431.

[109]

X.Y. Chen, X.Y. Cao, Y.J. Zhang, S. Islam, J.J. Zhang, R.C. Yang, J.J. Liu, G.Y. Li, R. Appels, G. Keeble-Gagnere, W.Q. Ji, Z.H. He, W.J. Ma, Genetic characterization of cysteine-rich type-b avenin-like protein coding genes in common wheat, Sci. Rep. 6 (2016) 30692.

[110]

F. Ma, M. Li, T. Li, W. Liu, Y. Liu, Y. Li, W. Hu, Q. Zheng, Y. Wang, K. Li, J. Chang, M. Chen, G. Yang, Y. Wang, G. He, Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers, PLoS One 8 (2013) e66758.

[111]

Y. Onodera, A. Suzuki, C.Y. Wu, H. Washida, F. Takaiwa, A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif, J. Biol. Chem. 276 (2001) 14139–14152.

[112]

M.P. Yamamoto, Y. Onodera, S.M. Touno, F. Takaiwa, Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes, Plant Physiol. 141 (2006) 1694–1707.

[113]

Z. Zhang, J. Yang, Y. Wu, Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque 2, prolamine-box binding factor, and O2 heterodimerizing proteins, Plant Cell 27 (2015) 1162–1172.

[114]

Z. Zhang, X. Zheng, J. Yang, J. Messing, Y. Wu, Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 10842–10847.

[115]

I. Diaz, J. Vicente-Carbajosa, Z. Abraham, M. Martínez, I. Isabel-La Moneda, P. Carbonero, The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development, Plant J. 29 (2002) 453–464.

[116]

N. Sreenivasulu, L. Borisjuk, B.H. Junker, H.P. Mock, H. Rolletschek, U. Seiffert, W. Weschke, U. Wobus, Barley grain development toward an integrative view, Int. Rev. Cell Mol. Biol. 281 (2010) 49–89.

[117]

M.S. Thomas, R.B. Flavell, Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin, Plant Cell 2 (1990) 1171–1180.

[118]

D. Albani, M.C. Hammond-Kosack, C. Smith, S. Conlan, V. Colot, M. Holdsworth, M.W. Bevan, The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes, Plant Cell 9 (1997) 171–184.

[119]

G. Dong, Z. Ni, Y. Yao, X. Nie, Q. Sun, Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development, Plant Mol. Biol. 63 (2007) 73–84.

[120]

C. Ravel, P. Martre, I. Romeuf, M. Dardevet, R. El-Malki, J. Bordes, N. Duchateau, D. Brunel, F. Balfourier, G. Charmet, Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness, Plant Physiol. 151 (2009) 2133–2144.

[121]

A. Juhász, S. Makai, E. Sebestyén, L. Tamás, E. Balázs, Role of conserved non-coding regulatory elements in LMW glutenin gene expression, PLoS One 6 (2011) e29501.

[122]

C. Ravel, S. Fiquet, J. Boudet, M. Dardevet, J. Vincent, M. Merlino, R. Michard, P. Martre, Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits, Front. Plant Sci. 5 (2014) 621.

[123]

Y. Geng, B. Pang, C. Hao, S. Tang, X. Zhang, T. Li, Expression of wheat high molecular weight glutenin subunit 1Bx is affected by large insertions and deletions located in the upstream flanking sequences, PLoS One 9 (2014) e105363.

[124]

W. Guo, H. Yang, Y. Liu, Y. Gao, Z. Ni, H. Peng, M. Xin, Z. Hu, Q. Sun, Y. Yao, The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene, Plant J. 84 (2015) 347–359.

[125]

A.J. Slade, S.I. Fuerstenberg, D. Loeffler, M.N. Steine, D. Facciotti, A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING, Nat. Biotechnol. 23 (2005) 75–81.

[126]

C. Uauy, F. Paraiso, P. Colasuonno, R.K. Tran, H. Tsai, S. Berardi, L. Comai, J. Dubcovsky, A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat, BMC Plant Biol. 9 (2009) 115.

[127]

H. Guo, Z. Yan, X. Li, Y. Xie, H. Xiong, Y. Liu, L. Zhao, J. Gu, S. Zhao, L. Liu, Development of a high-efficient mutation resource with phenotypic variation in hexaploid winter wheat and identification of novel alleles in the TaAGPL-B1 gene, Front. Plant Sci. 8 (2017) 1404.

[128]

G.J. Lawrence, F. MacRitchie, C.W. Wrigley, Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci, J. Cereal Sci. 7 (1988) 109–112.

[129]

C. Sun, F. Zhang, X. Yan, X. Zhang, Z. Dong, D. Cui, F. Chen, Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China, Plant Biotechnol. J. 15 (2017) 953–969.

[130]

Y. Liu, Y. Lin, S. Gao, Z. Li, J. Ma, M. Deng, G. Chen, Y. Wei, Y. Zheng, A genome-wide association study of 23 agronomic traits in Chinese wheat landraces, Plant J. 91 (2017) 861–873.

[131]

M. Pfeifer, K.G. Kugler, S.R. Sandve, B. Zhan, H. Rudi, T.R. Hvidsten, International Wheat Genome Sequencing Consortium, K.F.X. Mayer, O.A. Olsen, Genome interplay in the grain transcriptome of hexaploid bread wheat, Science 345 (2014) 1250091.

[132]

L. Dong, H. Liu, J. Zhang, S. Yang, G. Kong, J.S. Chu, N. Chen, D. Wang, Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research, BMC Genomics 16 (2015) 1039.

[133]

G.X. Chen, J.W. Zhou, Y.L. Liu, X.B. Lu, C.X. Han, W.Y. Zhang, Y.H. Xu, Y.M. Yan, Biosynthesis and regulation of wheat amylose and amylopectin from proteomic and phosphoproteomic characterization of granule-binding proteins, Sci. Rep. 6 (2016) 33111.

[134]

S. Zhen, X. Deng, M. Zhang, G. Zhu, D. Lv, Y. Wang, D. Zhu, Y. Yan, Comparative phosphoproteomic analysis under high-nitrogen fertilizer reveals central phosphoproteins promoting wheat grain starch and protein synthesis, Front. Plant Sci. 8 (2017) 67.

[135]

J.A. Doudna, E. Charpentier, The new frontier of genome engineering with CRISPR-Cas9, Science 346 (2014) 1258096.

[136]

Y. Wang, X. Cheng, Q. Shan, Y. Zhang, J. Liu, C. Gao, J. Qiu, Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol. 32 (2014) 947–951.

[137]

Y. Zhang, Z. Liang, Y. Zong, Y. Wang, J. Liu, K. Chen, J. Qiu, C. Gao, Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA, Nat. Commun. 7 (2016) 12617.

[138]

Z. Liang, K. Chen, T. Li, Y. Zhang, Y. Wang, Q. Zhao, J. Liu, H. Zhang, C. Liu, Y. Ran, C. Gao, Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun. 8 (2017) 14261.

[139]

Y. Zong, Y. Wang, C. Li, R. Zhang, K. Chen, Y. Ran, J. Qiu, D. Wang, C. Gao, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat. Biotechnol. 35 (2017) 438–440.

[140]

L. Yang, M. Güell, D. Niu, H. George, E. Lesha, D. Grishin, J. Aach, E. Shrock, W. Xu, J. Poci, R. Cortazio, R.A. Wilkinson, J.A. Fishman, G. Church, Genome-wide inactivation of porcine endogenous retroviruses, Science 350 (2015) 1101–1104.

[141]

X. Ma, Q. Zhang, Q. Zhu, W. Liu, Y. Chen, R. Qiu, B. Wang, Z. Yang, H. Li, Y. Lin, Y. Xie, R. Shen, S. Chen, Z. Wang, Y. Chen, J. Guo, L. Chen, X. Zhao, Z. Dong, Y.G. Liu, A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol. Plant 8 (2015) 1274–1284.

[142]

H.Q. Ling, S. Zhao, D. Liu, J. Wang, H. Sun, C. Zhang, H. Fan, D. Li, L. Dong, Y. Tao, C. Gao, H. Wu, Y. Li, Y. Cui, X. Guo, S. Zheng, B. Wang, K. Yu, Q. Liang, W. Yang, X. Lou, J. Chen, M. Feng, J. Jian, X. Zhang, G. Luo, Y. Jiang, J. Liu, Z. Wang, Y. Sha, B. Zhang, H. Wu, D. Tang, Q. Shen, P. Xue, S. Zou, X. Wang, X. Liu, F. Wang, Y. Yang, X. An, Z. Dong, K. Zhang, X. Zhang, M.C. Luo, J. Dvorak, Y. Tong, J. Wang, H. Yang, Z. Li, D. Wang, A. Zhang, J. Wang, Draft genome of the wheat A-genome progenitor Triticum urartu, Nature 496 (2013) 87–90.

[143]

J. Jia, S. Zhao, X. Kong, Y. Li, G. Zhao, W. He, R. Appels, M. Pfeifer, Y. Tao, X. Zhang, R. Jing, C. Zhang, Y. Ma, L. Gao, C. Gao, M. Spannagl, K.F. Mayer, D. Li, S. Pan, F. Zheng, Q. Hu, X. Xia, J. Li, Q. Liang, J. Chen, T. Wicker, C. Gou, H. Kuang, G. He, Y. Luo, B. Keller, Q. Xia, P. Lu, J. Wang, H. Zou, R. Zhang, J. Xu, J. Gao, C. Middleton, Z. Quan, G. Liu, J. Wang, International Wheat Genome Sequencing Consortium, H. Yang, X. Liu, Z. He, L. Mao, J. Wang, Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation, Nature 496 (2013) 91–95.

The Crop Journal
Pages 68-81
Cite this article:
Wang D, Zhang K, Dong L, et al. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. The Crop Journal, 2018, 6(1): 68-81. https://doi.org/10.1016/j.cj.2017.10.001

294

Views

3

Downloads

30

Crossref

N/A

Web of Science

32

Scopus

2

CSCD

Altmetrics

Received: 07 September 2017
Revised: 07 October 2017
Accepted: 20 October 2017
Published: 08 December 2017
© 2017 “Crop Science Society of China and Institute of Crop Science, CAAS”.
Return