AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (793.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Minor-effect QTL for heading date detected in crosses between indica rice cultivar Teqing and near isogenic lines of IR24

Zhichao SunaYujun ZhuaJunyu ChenaHui Zhangb,cZhenhua ZhangaXiaojun NiuaYeyang FanaJieyun Zhuanga( )
State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, Fujian, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Identification of quantitative trait loci (QTL) having small effects on heading date (HD) is important for fine-tuning flowering time in rice (Oryza sativa L.). In this study, minor-effect QTL for HD were identified using five segregating rice populations, including a recombinant inbred line population derived from crosses between indica cultivar Teqing and near isogenic lines of IR24, and four populations derived from residual heterozygotes identified in the original population. HD data from these populations were obtained in multiple years or at two locations with different photoperiods. A total of 11 QTL were detected; they had small additive effects ranging from 0.21 to 1.63days. The QTL were all detected in different populations, locations and/or years, having consistent allelic effects across experiments and a stable magnitude across years at the same location. These QTL, and other minor-effect QTL that have been cloned or fine-mapped, generally do not have strong photoperiod sensitivity, and thus can be used in a wide range of eco-geographical conditions. Seven of the 11 QTL were different from those that have been cloned or fine-mapped, providing new candidates for gene cloning and marker-assisted breeding. Allelic effects of QTL corresponding to those that had been cloned or fine-mapped, were much smaller in this study than previously reported. The results supported the assumption that qualitative and quantitative genes may be different alleles at the same loci, suggesting that it may be promising to identify minor-effect QTL from major heading date genes/QTL that have been cloned.

References

[1]

H. Saito, Q. Yuan, Y. Okumoto, K. Doi, A. Yoshimura, H. Inoue, M. Teraishi, T. Tsukiyama, T. Tanisaka, Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.), Theor. Appl. Genet. 119 (2009) 315–323.

[2]

H. Gao, M. Jin, X. Zheng, J. Chen, D. Yuan, Y. Xin, M. Wang, D. Huang, Z. Zhang, K. Zhou, P. Sheng, J. Ma, W. Ma, H. Deng, L. Jiang, S. Liu, H. Wang, C. Wu, L. Yuan, J. Wan, Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 16337–16342.

[3]

H.H. Wei, C. Li, Z.P. Xing, W.T. Wang, Q.G. Dai, G.S. Zhou, L. Wang, K. Xu, Z.Y. Huo, B.W. Guo, H.Y. Wei, H.C. Zhang, Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, J. Integr. Agric. 15 (2016) 50–62.

[4]

X. Wei, L. Liu, J. Xu, L. Jiang, W. Zhang, J. Wang, H. Zhai, J. Wan, Breeding strategies for optimum heading date using genotypic information in rice, Mol. Breed. 25 (2010) 287–298.

[5]

K. Fujino, U. Yamanouchi, M. Yano, Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation, Theor. Appl. Genet. 126 (2013) 611–618.

[6]

L. Naranjo, M. Talón, C. Domingo, Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes, BMC Genomics 15 (2014) 101.

[7]

K. Hori, K. Matsubara, M. Yano, Genetic control of flowering time in rice: integration of Mendelian genetics and genomics, Theor. Appl. Genet. 129 (2016) 2241–2252.

[8]

Y. Takahashi, K. Shimamoto, Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice, Genes Genet. Syst. 86 (2011) 175–182.

[9]

B.H. Koo, S.C. Yoo, J.W. Park, C.T. Kwon, B.D. Lee, G. An, Z. Zhang, J. Li, Z. Li, N.C. Paek, Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes, Mol. Plant 6 (2013) 1877–1888.

[10]

J. Zhang, X. Zhou, W. Yan, Z. Zhang, L. Lu, Z. Han, H. Zhao, H. Liu, P. Song, Y. Hu, G. Shen, Q. He, S. Guo, G. Gao, G. Wang, Y. Xing, Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice, New Phytol. 208 (2015) 1056–1066.

[11]

W. Wu, X. Zheng, G. Lu, Z. Zhong, H. Gao, L. Chen, C. Wu, H. Wang, Q. Wang, K. Zhou, J. Wang, F. Wu, X. Zhang, X. Guo, Z. Cheng, C. Lei, Q. Lin, L. Jiang, H. Wang, S. Ge, J. Wan, Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 2775–2780.

[12]

T. Shibaya, K. Hori, E. Ogiso-Tanaka, U. Yamanouchi, K. Shu, N. Kitazawa, A. Shomura, T. Ando, K. Ebana, J. Wu, T. Yamazaki, M. Yano, Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in rice, Plant Cell Physiol. 57 (2016) 1828–1838.

[13]

J.Y. Chen, L. Guo, H. Ma, Y.Y. Chen, H.W. Zhang, J.Z. Ying, J.Y. Zhuang, Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.), Theor. Appl. Genet. 127 (2014) 2515–2524.

[14]

Z. Zhong, W. Wu, H. Wang, L. Chen, L. Liu, C. Wang, Z. Zhao, G. Lu, H. Gao, X. Wei, C. Yu, M. Chen, Y. Shen, X. Zhang, Z. Cheng, J. Wang, L. Jiang, J. Wan, Fine mapping of a minor-effect QTL, DTH12, controlling heading date in rice by up-regulation of florigen genes under long-day conditions, Mol. Breed. 34 (2014) 311–322.

[15]

L. Chen, Z. Zhong, W. Wu, L. Liu, G. Lu, M. Jin, J. Tan, P. Sheng, D. Wang, J. Wang, Z. Cheng, J. Wang, X. Zhang, X. Guo, F. Wu, Q. Lin, S. Zhu, L. Jiang, H. Zhai, C. Wu, J. Wan, Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice, Mol. Breed. 35 (2015) 206.

[16]

K. Hori, Y. Nonoue, N. Ono, T. Shibaya, K. Ebana, K. Matsubara, E. Ogiso-Tanaka, T. Tanabata, K. Sugimoto, F. Taguchi-Shiobara, J. Yonemaru, R. Mizobuchi, Y. Uga, A. Fukuda, T. Ueda, S. Yamamoto, U. Yamanouchi, T. Takai, T. Ikka, K. Kondo, T. Hoshino, E. Yamamoto, S. Adachi, H. Nagasaki, A. Shomura, T. Shimizu, I. Kono, S. Ito, T. Mizubayashi, N. Kitazawa, K. Nagata, T. Ando, S. Fukuoka, T. Yamamoto, M. Yano, Genetic architecture of variation in heading date among Asian rice accessions, BMC Plant Biol. 15 (2015) 115.

[17]

L. Zhang, Q. Li, H. Dong, Q. He, L. Liang, C. Tan, Z. Han, W. Yao, G. Li, H. Zhao, W. Xie, Y. Xing, Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice, Sci. Rep. 5 (2015) 7663.

[18]

M. Yano, Y. Harushima, Y. Nagamura, N. Kurata, Y. Minobe, T. Sasaki, Identification of quantitative trait loci controlling heading date in rice using a high-density lingkage map, Theor. Appl. Genet. 95 (1997) 1025–1032.

[19]

S. Hittalmani, N. Huang, B. Courtois, R. Venuprasad, H.E. Shashidhar, J.Y. Zhuang, K.L. Zheng, G.F. Liu, G.C. Wang, J.S. Sidhu, S. Srivantaneeyakul, V.P. Singh, P.G. Bagali, H.C. Prasanna, G. McLaren, G.S. Khush, Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia, Theor. Appl. Genet. 107 (2003) 679–690.

[20]

K. Ebana, T. Shibaya, J. Wu, K. Matsubara, H. Kanamori, H. Yamane, U. Yamanouchi, T. Mizubayashi, I. Kono, A. Shomura, S. Ito, T. Ando, K. Hori, T. Matsumoto, M. Yano, Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars, Theor. Appl. Genet. 122 (2011) 1199–1210.

[21]

T. Yamamoto, H. Lin, T. Sasaki, M. Yano, Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interaction with Hd2 in rice using advanced backcross progeny, Genetics 154 (2000) 885–891.

[22]

H. Lin, M. Ashikari, U. Yamanouchi, T. Sasaki, M. Yano, Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice, Breed. Sci. 52 (2002) 35–41.

[23]

Y. Uga, Y. Nonoue, Z.W. Liang, H.X. Lin, S. Yamamoto, U. Yamanouchi, M. Yano, Accumulation of additive effects generates a strong photoperiod sensitivity in the extremely late-heading rice cultivar ‘Nona Bokra’, Theor. Appl. Genet. 114 (2007) 1457–1466.

[24]

B. Yan, N. Tondi Yacouba, J. Chen, Y. Wang, G. Gao, Q. Zhang, X. Liu, Y. He, Analysis of minor quantitative trait loci for eating and cooking quality traits in rice using a recombinant inbred line population derived from two indica cultivars with similar amylose content, Mol. Breed. 34 (2014) 2151–2163.

[25]

D.Y. Mei, Y.J. Zhu, Y.H. Yu, Y.Y. Fan, D.R. Huang, J.Y. Zhuang, Quantitative trait loci for grain chalkiness and endosperm transparency detected in three recombinant inbred line populations of indica rice, J. Integr. Agric. 12 (2013) 1–11.

[26]

Z.H. Zhang, K. Wang, L. Guo, Y.J. Zhu, Y.Y. Fan, S.H. Cheng, J.Y. Zhuang, Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice, PLoS One 7 (2012) e52538.

[27]

Y. Lu, K. Zheng, A simple method for isolation of rice DNA, Chin. J. Rice Sci. 6 (1992) 47–48 (in Chinese with English abstract).

[28]
K. Zheng, N. Huang, J. Bennett, G.S. Khush, PCR-basedMarker-assisted Selection in Rice Breeding, IRRI Discussion Paper Series No.12,, International Rice Research Institute, LosBanos, Philippines, 1995.
[29]

X. Chen, S. Temnykh, Y. Xu, Y.G. Cho, S.R. McCouch, Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.), Theor. Appl. Genet. 95 (1997) 553–567.

[30]

E. Lander, P. Green, J. Abrahamson, A. Barlow, M. Daley, S. Lincoln, L. Newburg, MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations, Genomics 1 (1987) 174–181.

[31]

J. Yang, C. Hu, H. Hu, R. Yu, Z. Xia, X. Ye, J. Zhu, QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations, Bioinformatics 24 (2008) 721–723.

[32]
S. Wang, C.J. Basten, Z.B. Zeng, Windows QTL Cartographer2.5, Department of Statistics, North Carolina State University, Raleigh, NC, USA, 2012.
[33]

S.R. McCouch, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative), Gene nomenclature system for rice, Rice 1 (2008) 72–84.

[34]

H. Gao, X. Zheng, G. Fei, J. Chen, M. Jin, Y. Ren, W. Wu, K. Zhou, P. Sheng, F. Zhou, L. Jiang, J. Wang, X. Zhang, X. Guo, J. Wang, Z. Cheng, C. Wu, H. Wang, J. Wan, Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice, PLoS Genet. 9 (2013) e1003281.

[35]

X.F. Bian, X. Liu, Z.G. Zhao, L. Jiang, H. Gao, Y.H. Zhang, M. Zheng, L.M. Chen, S.J. Liu, H.Q. Zhai, J.M. Wan, Heading date gene, dth3 controlled late flowering in O. glaberrima Steud. by down-regulating Ehd1, Plant Cell Rep. 30 (2011) 2243–2254.

[36]

K. Matsubara, E. Ogiso-Tanaka, K. Hori, K. Ebana, T. Ando, M. Yano, Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering, Plant. Cell Physiol. 53 (2012) 709–716.

[37]

R. Komiya, A. Ikegami, S. Tamaki, S. Yokoi, K. Shimamoto, Hd3a and RFT1 are essential for flowering in rice, Development 135 (2008) 767–774.

[38]

C. Ryu, S. Lee, L. Cho, S. Kim, Y. Lee, S. Choi, H. Jeong, J. Yi, S. Park, C. Han, G. An, OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice, Plant Cell Environ. 32 (2009) 1412–1427.

[39]

M. Maheswaran, N. Huang, S.R. Sreerangasamy, S.R. McCouch, Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.), Mol. Breed. 6 (2000) 145–155.

[40]

H. Nakagawa, J. Yamagishi, N. Miyamoto, M. Motoyama, M. Yano, K. Nemoto, Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model, Theor. Appl. Genet. 110 (2005) 778–786.

[41]

N. Huang, B. Courtois, G.S. Khush, H. Lin, G. Wang, P. Wu, K. Zheng, Association of quantitative trait loci for plant height with major dwarf genes in rice, Heredity 77 (1996) 130–137.

[42]

Z.H. Zhang, L.Y. Cao, J.Y. Chen, Y.X. Zhang, J.Y. Zhuang, S.H. Cheng, Effects of Hd2 in the presence of the photoperiod-insensitive functional allele of Hd1 in rice, Biol. Open 5 (2016) 1719–1726.

The Crop Journal
Pages 291-298
Cite this article:
Sun Z, Zhu Y, Chen J, et al. Minor-effect QTL for heading date detected in crosses between indica rice cultivar Teqing and near isogenic lines of IR24. The Crop Journal, 2018, 6(3): 291-298. https://doi.org/10.1016/j.cj.2018.01.002

201

Views

2

Downloads

10

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 24 June 2017
Revised: 06 October 2017
Accepted: 03 January 2018
Published: 07 March 2018
© 2018 "Crop Science Society of China and Institute of Crop Science, CAAS".

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return