PDF (502.9 KB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

History, current status, and prospects of soybean production and research in sub-Saharan Africa

Dalia Mohamedkheir Khojelya,b,1Seifeldin Elrayah Ibrahimb,a,1Enoch Sapeya,cTianfu Hana()
MOA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Gezira Research Station, Agricultural Research Corporation (ARC), Wad Medani, Sudan
Oil Palm Breeding and Genetics, CSIR-Oil Palm Research Institute, Ghana

1 Dalia Mohamedkheir Khojely and Seifeldin Elrayah Ibrahim contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Soybean (Glycine max (L.) Merr.) is a non-native and non-staple crop in sub-Saharan Africa (SSA) with potential to be a commercial crop owing to its wide range of uses as food, feed, and industrial raw material. Soybean was first introduced to SSA by Chinese traders in the 19th century and was cultivated as an economic crop as early as 1903 in South Africa. In the past four decades, soybean cultivation area and production in SSA has increased exponentially, from about 20,000 ha and 13,000 t in the early 1970s to 1,500,000 ha and 2,300,000 t in 2016. Soybean yield has been stagnant in SSA for decades at about 1.1 t ha−1, much lower than the world average, representing one of the most challenging issues in the soybean industry in SSA. The low soybean yield in SSA can be attributed to the use of poor-performing varieties and to the limited application of fertilizers and rhizobial inoculants in soils with no history of soybean production. South Africa, Nigeria, Zambia, and Uganda are the leading soybean producers in SSA. Soybean research in SSA is conducted by international and national research institutions, including IITA, national soybean improvement programs, universities, and the private sector. Between 1970 and 2011, 195 soybean varieties were released by IITA, private breeders, and national soybean improvement programs in SSA. This paper reviews the history and current state of soybean production and of the utilization and adoption of tropical varieties in SSA, addresses the major soybean yield-limiting factors across the region, and discusses the potential of the soybean industry in SSA. It also highlights soybean improvement efforts and lessons learned from previous soybean improvement efforts and the current progress of some national soybean improvement programs in SSA. Opportunities for scaling up tropical soybean as a major crop across SSA countries are promising.

References

[1]

S. Mpepereki, F. Javaheri, P. Davis, K.E. Giller, Soyabeans and sustainable agriculture: promiscuous soyabeans in southern Africa, Field Crops Res. 65 (2000) 137–149.

[2]
K.E. Giller, K.E. Dashiell, Glycine max (L.) Merr, in: M. Brink, G.Belay (Eds.), Plant Resources of Tropical Africa 1. Cereals andPulses, PROTA Foundation, Wageningen, Netherlands/Backhuys Publishers, Leiden, Netherlands/CTA, Wageningen, Netherlands 2006, pp. 76–82.
[3]
W. Shurtleff, A. Aoyagi, History of Soybeans and Soyfoods inAfrica (1857–2009): Extensively Annotated Bibliography andSource Book, Soyinfo Center, Lafayette, California, USA, 2009.
[4]

S.E. Ibrahim, Agronomic studies on irrigated soybeans in central Sudan: I. Effect of plant spacing on grain yield and yield components, Int. J. Agric. Sci. 2 (2012) 733–739.

[5]

S.E. Ibrahim, W.Y. Han, I.Y. Baek, G.R. Cho, Evaluating soybean germplasm for agronomic performance under irrigated cropping environment in Sudan, J. Korean Soc. Int. Agric. 29 (2017) 415–420.

[6]
H. Tefera, Breeding for promiscuous soybeans at IITA, in: A.Sudaric (Ed.), Soybean-Molecular Aspects of Breeding, InTech, Rijeka, Croatia, 2011.
[7]
IITA, Cowpea-cereals systems improvement in the savannas, Annual Report (Project 11), IITA 1999, Ibadan, Nigeria 1999, pp. 54–55.
[8]
Office of Global Analysis, Foreign Agricultural Service/UnitedSates Department of Agriculture, Oilseeds: World Marketsand Trade, USDA, Washington, D.C., USA, 2017.
[9]
P.L. Woomer, F. Baijukya, A. Turner, Progress TowardsAchieving the Vision of Success of N2Africa, http://www.n2africa.org/sites/n2africa.org/files/N2Africa_Progress%20towards%20achieving%20the%20vision%20of%20success%20in%20N2Africa_0.pdf 2012.
[10]
J. Rusike, G. Van den Brand, S. Boahen, K. Dashiell, S.Kantengwa, J. Ongoma, D.M. Mongane, G. Kasongo, Z.B.Jamangani, R. Aidoo, R. Abaidoo, Value Chain Analyses ofGrain Legumes in N2Africa: Kenya, Rwanda, Eastern DRC, Ghana, Nigeria, Mozambique, Malawi and Zimbabwe, http://www.n2africa.org/sites/n2africa.org/files/images/N2Africa_Value%20chain%20analyses%20of%20grain%20legumes%20in%20N2Africa.pdf 2013.
[11]
J.C.N. Joubert, A.A. Jooste, Comparative analysis of thedifferent regions of South African soybean industry, Proceedings of the World Soybean Research Conference IX, February 18–22, 2013, Durban, South Africa, 2013.
[12]
A.L. Kolapo, Soybean: Africa's potential Cinderella food crop, in: N.G. Tzi-Bun (Ed.), Soybean: Biochemistry, Chemistry andPhysiology, InTech, Rijeka, Croatia 2011, pp. 137–150.
[13]

D.A. Shannon, M.M. Kalala, Adoption of soybean in Sub-Saharan Africa: a comparative analysis of production and utilization in Zaire and Nigeria, Agric. Syst. 46 (1994) 369–384.

[14]
T.Z. Dlamini, P. Tshabalala, T. Mutengwa, Soybeans production in South Africa, Oilseeds Fats Crops Lipids, 21, 2014, p. D207.
[15]

T.O.S. Popoola, C.O. Akueshi, Nutritional evaluation of Daddawa, a local spice made from soybean (Glycine max), World J. Microbiol. Biotechnol. 2 (1986) 405–409.

[16]
A.D. Alene, T. Abdoulaye, J. Rusike, V. Manyong, T.S. Walker, The effectiveness of crop improvement programmes fromthe perspectives of varietal output and adoption: cassava, cowpea, soybean and yam in Sub-Saharan Africa and maizein West and Central Africa, in: T.S. Walker, J. Alwang (Eds.), Crop Improvement, Adoption and Impact of ImprovedVarieties in Food Crops in Sub-Saharan Africa, CGIARConsortium of International Agricultural Research Centers, Montpellier, France, CABI, Wallingford, UK 2015, pp. 74–122.
[17]
R. Ortiz, IITA: 50 Years After, Transforming Africa's Agriculture and Nourishing Rural Development, IITA, Ibadan, Nigeria, 2017.
[18]

W.W. Garner, H.A. Allard, Effect of the relative length of the day and night and other factors of the environment on growth and reproduction in plants, J. Agric. Res. 18 (1920) 553–606.

[19]

C. Wu, Q. Ma, K.M. Yam, M.Y. Cheung, Y. Xu, T. Han, H.M. Lam, K. Chong, In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system, Planta 223 (2006) 725–735.

[20]

B. Jiang, Y. Yue, Y. Gao, L. Ma, S. Sun, C. Wu, W. Hou, H.M. Lam, T. Han, GmFT2a polymorphism and maturity diversity in soybeans, PLoS One 8 (2013) e77474.

[21]

T. Wu, J. Li, C. Wu, S. Sun, T. Mao, B. Jiang, W. Hou, T. Han, Analysis of the independent- and interactive-photo-thermal effects on soybean flowering, J. Integr. Agric. 14 (2015) 622–632.

[22]
S.E. Ibrahim, Soybean: Crop of Hope in Sudan, Symposium ofKorean Society of International Agriculture, June 21, 2011, Suwon, Republic of Korea, 2011, pp. 199–215.
[23]
N.M. Beintema, E. Castelo-Magalhaes, E.H. Howard, M.Mwala, Agricultural Science and Technology Indicators: Zambia, ASTI Country Brief No. 18, International Food Policyand Research Institute, 2004.
[24]
P.C. Sanginga, A.A. Adesina, V.M. Manyong, O. Otite, K.E.Dashiell, Social Impact of Soybean in Nigeria's SouthernGuinea Savanna, IITA, Ibadan, Nigeria, 1999.
[25]

W. Getahun, M. Atnaf, S. Abady, T. Degu, Z. Dilnesaw, Participatory variety selection of soybean (Glycine max (L.) Merrill) varieties under rain fed condition of Pawe District, North-Western Ethiopia, Int. J. Appl. Sci. Math. 3 (2016) 2394–2894.

[26]

H. Tefera, A.Y. Kamara, B. Asafo-Adjei, K.E. Dashiell, Improvement in grain and fodder yields of early-maturing promiscuous soybean varieties in the Guinea Savanna of Nigeria, Crop Sci. 49 (2009) 2037–2042.

[27]
J. Sadie, South African Variety List as Maintained by theRegistrar of Plant Improvement, Department of Agriculture, Fisheries and Forestry, Republic of South Africa, 2015.
[28]
A.S. de Beer, M.A. Prinsloo, The national soybean cultivartrials in South Africa-34 years experiences and progress, Proceedings of the World Soybean Research Conference IX, February 18–22, 2013, Durban, South Africa, 2013.
[29]
D. Dias, M. Amane, Yield response of soybean genotypes todifferent planting dates in Mozambique, in: J.S. Tenywa, G.Taulya, G. Kawube, R. Kawuki, M. Namugwanya, L. Santos(Eds.), Proceedings of 10th African Crop Science Conference, October 10–13, 2011, Maputo, Mozambique, African CropScience Society, Kampala, Uganda 2011, pp. 539–541.
[30]

S.E. Ibrahim, Agronomic studies on irrigated soybeans in central Sudan: Ⅱ. Effect of sowing date on grain yield and yield components, Int. J. Agric. Sci. 2 (2012) 766–773.

[31]
S.E. Ibrahim, The current and the future of soybean breedingin Sudan, Proceedings of 7th International Crop ScienceCongress, August 14–19, 2016, Beijing, China 2016, pp. 16–17.
[32]
T.E. Carter Jr., P.I. De Souza, L.C. Purcell, Recent advances inbreeding for drought and aluminium resistance in soybean, in: H. Kauffman (Ed.), Proceedings of the Sixth World SoybeanResearch Conference, August 4–7, 1999, Chicago, Illinois, Superior Printing, Champaign, Illinois, USA 1999, pp. 106–125.
[33]

T.E. Carter Jr., J.W. Burton, D.T. Bowman, Z. Cui, X. Zhou, M.R. Villagarcia, A.S. Niewoehner, M.O. Fountain, Registration of ‘N7001’ soybean, Crop Sci. 43 (2003) 1126–1127.

[34]
T.E. Carter Jr., J. Orf, L.C. Purcell, J.E. Specht, H.R. Boerma, P.Chen, T. Sinclair, T. Rufty, Tough times, tough plants–newsoybean genes defend against drought and other stresses, Proceedings of the 33rd Soybean Seed Research Conference, December 5–8, 2006, Chicago, Illinois, 2006.
[35]

M. Atnaf, S. Kidane, S. Abadi, Z. Fisha, GGE biplots to analyze soybean multi-environment yield trial data in north Western Ethiopia, J. Plant Breed. Crop Sci. 5 (2013) 245–254.

[36]

N. Sanginga, G. Thottappilly, K. Dashiell, Effectiveness of rhizobia nodulating recent promiscuous soyabean selections in the moist savanna of Nigeria, Soil Biol. Biochem. 32 (2000) 127–133.

[37]
K.E. Giller, Nitrogen Fixation in Tropical Cropping Systems, 2nd Edition CABI Publishing, Wallingford, Oxon, UK, 2001.
[38]

L.H. Camacho, Expanding the genetic potential of the soybean, J. Am. Oil Chem. Soc. 58 (1981) 125–127.

[39]

E.L. Pulver, F. Brockman, H.C. Wien, Nodulation of soybean cultivars with Rhizobium spp. and their response to inoculation with R. japonicum, Crop Sci. 22 (1982) 1065–1070.

[40]

E.A. Kueneman, W.R. Root, K.E. Dashiell, J. Hohenberg, Breeding soybean for the tropics capable of nodulating effectively with indigenous Rhizobium spp., Plant Soil 83 (1984) 387–396.

[41]

E.L. Pulver, E.A. Kueneman, V. Ranga-Rao, Identification of promiscuous nodulating soybean efficient in N2 fixation, Crop Sci. 25 (1985) 660–663.

[42]

E.T. Gwata, D.S. Wofford, P.L. Pfahler, K.J. Boote, Genetics of promiscuous nodulation in soybean: nodule dry weight and leaf color score, J. Hered. 95 (2004) 154–157.

[43]

E.E. Hartwig, R.A.S. Kiihl, Identification and utilization of a delayed flowering character in soybean for short-day conditions, Field Crops Res. 2 (1979) 145–151.

[44]

N. Neumaier, A.T. James, Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics, ACIAR Food Legume Newsletter 8 (1993) 12–14.

[45]

C.R. Spehar, Impact of strategic genes in soybean on agricultural development in the Brazilian tropical savannah, Field Crops Res. 41 (1995) 141–146.

[46]

T.R. Sinclair, N. Neumaier, J.R.B. Farias, A.L. Nepomuceno, Comparison of vegetative development in soybean cultivars for low-latitude environments, Field Crops Res. 92 (2005) 53–59.

[47]

Y. Yue, N. Liu, B. Jiang, M. Li, H. Wang, Z. Jiang, H. Pan, Q. Xia, Q. Ma, T. Han, H. Nian, A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean, Mol. Plant 10 (2017) 656–658.

[48]

D. Destro, V. Carpentieri-Pípolo, R.A.S. Kiihl, L.A. Almeida, Photoperiodism and genetic control of the long juvenile period in soybean: a review, Crop Breed. Appl. Biotechnol. 1 (2001) 72–92.

[49]

S. Lu, X. Zhao, Y. Hu, S. Liu, H. Nan, X. Li, C. Fang, D. Cao, X. Shi, L. Kong, T. Su, F. Zhang, S. Li, Z. Wang, X. Yuan, E.R. Cober, J. Weller, B. Liu, X. Hou, Z. Tian, F. Kong, Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield, Nat. Genet. 49 (2017) 773–779.

[50]
A. Nekesa, J. Okalebo, C. Othieno, M. Thuita, A. Bationo, B.Waswa, The potential of increased maize and soybeanproduction in Uasin Gishu District, Kenya, resulting from soilacidity amendment using minjingu phosphate rock andagricultural lime, in: A. Bationo, B. Waswa, J. Okeyo, F. Maina, J. Kihara (Eds.), Innovations as Key to the Green Revolution inAfrica, Springer, Dordrecht, the Netherlands, 2011.
[51]

E. Ronner, A.C. Franke, B. Vanlauwe, M. Dianda, E. Edeh, B. Ukem, A. Bala, J. van Heerwaarden, K.E. Giller, Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers' fields in northern Nigeria, Field Crops Res. 186 (2016) 133–145.

[52]

M. Munthali, P. Nalivata, W. Makumba, E. Mbewe, H. Manase, G. Oduor, M. Macharia, K. Kayuki, Optimizing nutrient use efficiency and returns from soybean production under smallholders in three agro-ecologies of Malawi, Agric. Sci. 8 (2017) 801–815.

[53]

A. Raimi, R. Adeleke, A. Roopnarain, Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa, Cogent Food Agric. 3 (2017) 1400933.

[54]

B.D. Tarfa, N. Maman, K. Ouattara, C. Wortmann, Groundnut and soybean response to nutrient application in West Africa, Agron. J. 109 (2017) 1–10.

[55]

P.Y. Klogo, J.K. Ofori, M.K. Glover, P.K. Avumegah, Response of promiscuous and non-promiscuous. Soybean (Glycine max (L) Merill) cultivars to indigenous Bradyrhizobium japonicum inoculation in three Ghanaian soils, Int. J. Plant Sci. Ecol. 2 (2016) 15–22.

[56]

E.E. Agoyi, T.L. Odong, J.B. Tumuhairwe, G. Chigeza, B.W. Diers, P. Tukamuhabwa, Genotype by environment effects on promiscuous nodulation in soybean (Glycine max L. Merrill), Agric. Food Secur. 6 (2017) 29.

[57]
C. Gyogluu, M. Mohammed, S.K. Jaiswal, S. Kyei-Boahen, F.D.Dakora, Assessing host range, symbiotic effectiveness, andphotosynthetic rates induced by native soybean rhizobiaisolated from Mozambican and South African soils, Symbiosis 2017, pp. 1–10.
[58]

M. Kermah, A.C. Franke, S. Adjei-Nsiah, B.D.K. Ahiabor, R.C. Abaidoo, K.E. Giller, N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana, Agric. Ecosyst. Environ. (2017)https://doi.org/10.1016/j.agee.2017.08.028 (inpress).

[59]

D. Muleta, M.H. Ryder, M.D. Denton, The potential for rhizobial inoculation to increase soybean grain yields on acid soils in Ethiopia, Soil Sci. Plant Nutr. 63 (2017) 441–451.

[60]

D. van Vugt, A.C. Franke, K.E. Giller, Understanding variability in the benefits of BNF and soybean-maize rotations on smallholder farmers' fields in Malawi, Agric. Ecosyst. Environ. (2017)https://doi.org/10.1016/j.agee.2017.05.008 (inpress).

[61]

J. van Heerwaarden, F. Baijukya, S. Kyei-Boahen, S. AdjeiNsiah, P. Ebanyat, N. Kamai, E. Wolde-meskel, F. Fred Kanampiu, B. Vanlauwe, K. Giller, Soyabean response to rhizobium inoculation across sub-Saharan Africa: patterns of variation and the role of promiscuity, Agric. Ecosyst. Environ. (2017)https://doi.org/10.1016/j.agee.2017.08.016 (inpress).

[62]

S.O. Yagoub, M.H.A. Hamed, Effect of sowing date on two genotypes of soybean (Glycine max. Merrill) grown under semi-desert region, Universal J. Agric. Res. 1 (2013) 59–64.

[63]

G.E. Nwofia, R.E. Edugbo, E.U. Mbah, Interaction of genotype × sowing date on yield and associated traits of soybean [Glycine max (L.) Merrill] over two cropping seasons in a humid agro-ecological zone of south-eastern Nigeria, J. Agric. Sci. 11 (2016) 164–177.

[64]

A.M.A. Ismail, F.M. Khalifa, Irrigation, planting date and intra-row spacing effects on soybean grown under dry farming systems, Qatar Univ. Sci. Bull. 7 (1987) 149–167.

[65]

M. Worku, T. Astatkie, Row and plant spacing effects on yield and yield components of soya bean varieties under hot humid tropical environment of Ethiopia, J. Agron. Crop Sci. 197 (2011) 67–74.

[66]

A. Kamara, A. Tofa, T. Ademulegun, R. Solomon, H. Shehu, N. Kamai, L. Omoigui, Maize–soybean intercropping for sustainable intensification of cereal-legume cropping systems in northern Nigeria, Exp. Agric. (2017) 1–15.

[67]

W. Bekele, K. Belete, T. Tana, Effect of soybean varieties and nitrogen fertilizer rates on yield, yield components and productivity of associated crops under maize/soybean intercropping at Mechara, Eastern Ethiopia, Agric. For. Fish. 5 (2016) 1–7.

[68]

J.M.M. Matusso, J.N. Mugwe, M. Mucheru-Muna, Potential role of cereal-legume intercropping systems in integrated soil fertility management in smallholder farming systems of Sub-Saharan Africa, J. Agric. Environ. Manag. 3 (2014) 162–174.

[69]

B. Vanlauwe, A.H. AbdelGadir, J. Adewopo, S. Adjei-Nsiah, T. Ampadu-Boakye, R. Asare, F. Baijukya, E. Baars, M. Bekunda, D. Coyne, M. Dianda, P.M. Dontsop-Nguezet, P. Ebanyat, S. Hauser, J. Huising, A. Jalloh, L. Jassogne, N. Kamai, A. Kamara, F. Kanampiu, A. Kehbila, K. Kintche, C. Kreye, A. Larbi, C. Masso, P. Matungulu, I. Mohammed, L. Nabahungu, F. Nielsen, G. Nziguheba, P. Pypers, D. Roobroeck, M. Schut, G. Taulya, M. Thuita, V.N.E. Uzokwe, P. van Asten, L. Wairegi, M. Yemefack, H.J.W. Mutsaers, Looking back and moving forward: 50 years of soil and soil fertility management research in sub-Saharan Africa, Int. J. Agric. Sustain. 15 (2017) 613–631.

[70]

M. Peoples, E. Craswell, Biological nitrogen fixation: investments, expectations and actual contributions to agriculture, Plant Soil 141 (1992) 13–39.

[71]

F. Yang, S. Huang, R. Gao, W. Liu, T. Yong, X. Wang, X. Wu, W. Yang, Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio, Field Crop Res. 155 (2014) 245–253.

[72]

F. Yang, X. Wang, D. Liao, F. Lu, R. Gao, W. Liu, T. Yong, X. Wu, J. Du, J. Liu, W. Yang, Yield response to different planting geometries in maize-soybean relay strip intercropping systems, Agron. J. 107 (2015) 296–304.

[73]

F. Yang, D. Liao, X. Wu, R. Gao, Y. Fan, M.A. Raza, X. Wang, T. Yong, W. Liu, J. Liu, J. Du, K. Shu, W. Yang, Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems, Field Crops Res. 203 (2017) 16–23.

[74]

J. Du, T. Han, J. Gai, T. Yong, X. Sun, X. Wang, F. Yang, J. Liu, K. Shu, W. Liu, W. Yang, Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability, J. Integr. Agric. 16 (2017) 60345–60347.

[75]

Y. Lv, C. Francis, P. Wu, X. Chen, X. Zhao, Maize-soybean intercropping interactions above and below ground, Crop Sci. 54 (2014) 914–922.

[76]
J. Dixon, A. Gulliver, D. Gibbon, Farming Systems and Poverty: Improving Farmers Livelihoods in a Changing World, Rome, Italy, and Washington, D.C, FAO and the World Bank, 2001.
[77]

K.E. Giller, P. Tittonell, M.C. Rufino, M.T. van Wijk, S. Zingore, P. Mapfumo, S. Adjei-Nsiah, M. Herrero, R. Chikowo, M. Corbeels, E.C. Rowe, F. Baijukya, A. Mwijage, J. Smith, E. Yeboah, W.J. van der Burg, O.M. Sanogo, M. Misiko, N. de Ridder, S. Karanja, C. Kaizzi, J. K'ungu, M. Mwale, D. Nwaga, C. Pacini, B. Vanlauwe, Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development, Agric. Syst. 104 (2011) 191–203.

[78]

P. Tittonell, A. Muriuki, K.D. Shepherd, D. Mugendi, K.C. Kaizzi, J. Okeyo, L. Verchot, R. Coe, B. Vanlauwe, The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa — a typology of smallholder farms, Agric. Syst. 103 (2010) 83–97.

[79]
P. Tittonell, B. Vanlauwe, M. Misiko, K.E. Giller, Targetingresources within diverse, heterogeneous and dynamic farming systems: towards a ‘Uniquely African Green Revolution’, in: A. Bationo, B. Waswa, J. Okeyo, F. Maina, J. Kihara (Eds.), Innovations as Key to the Green Revolution in Africa, Springer, Netherlands 2011, pp. 747–758.
[80]
FAOSTAT, Food and Agriculture Organization of the UnitedNations, http://Faostat.fao.org 2015.
[81]
B. Badu-Apraku, M.A.B. Fakorede, Maize in Sub-SaharanAfrica: importance and production constraints, Advances in Genetic Enhancement of Early and Extra-Early Maize for SubSaharan Africa, Springer, Cham, Switzerland, 2017.
[82]

B. Vanlauwe, D. Coyne, J. Gockowski, S. Hauser, J. Huising, C. Masso, G. Nziguheba, P. van Asten, Sustainable intensification and the smallholder African farmer, Curr. Opin. Environ. Sustain. 8 (2014) 15–22.

[83]

A.C. Franke, G.J. van den Brand, B. Vanlauwe, K.E. Giller, Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: a review, Agric. Ecosyst. Environ. (2017)https://doi.org/10.1016/j.agee.2017.09.029 (in press).

[84]
G. Ejeta, The Striga scourge in Africa: a growing pandemic, in: G. Ejeta, J. Gressel (Eds.), Integrating New Technologies forStriga Control, World Scientific Publishing, Singapore 2007, pp. 3–16.
[85]

A. Oswald, Striga control-technologies and their dissemination, Crop Prot. 24 (2005) 333–342.

[86]

C.A.O. Midega, D. Salifu, T.J. Bruce, J. Pittchar, J.A. Pickett, Z.R. Khan, Cumulative effects and economic benefits of intercropping maize with food legumeson Striga hermonthica infestation, Field Crop Res. 155 (2014) 144–152.

[87]

N. Sanginga, K.E. Dashiell, J. Diels, B. Vanlauwe, O. Lyasse, R.J. Carsky, S. Tarawali, A. Asafo-Adjei, A. Menkir, S. Schulz, B.B. Singh, D. Chikoye, D. Keatinge, R. Ortiz, Sustainable resource management coupled to resilient germplasm to provide new intensive cereal-grain-legume-livestock systems in the dry savanna, Agric. Ecosyst. Environ. 100 (2003) 305–314.

[88]

M.K. van Ittersum, L.G.J. van Bussela, J. Wolf, P. Grassini, J. van Wart, N. Guilpart, L. Claessens, H. de Groot, K. Wiebe, D. Mason-D'Croz, H. Yang, H. Boogaard, P.A.J. van Oort, M.P. van Loon, K. Saito, O. Adimo, S. Adjei-Nsiah, A. Agali, A. Bala, R. Chikowo, M. Kaizzi, M. Kouressy, J.H. Makoi, K. Ouattara, K. Tesfaye, K.G. Cassman, Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14964–14969.

[89]

T. Masuda, P. Goldsmith, World soybean production: area harvested, yield, and long-term projections, Int. Food Agribis. Manag. Rev. 12 (2009) 145–164.

[90]

G.L. Hartman, E.D. West, T.K. Herman, Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests, Food Secur. 3 (2011) 5–17.

[91]

T.R. Sinclair, H. Marrou, A. Soltani, V. Vadez, K.C. Chandolu, Soybean production potential in Africa, Glob. Food Secur. 3 (2014) 31–40.

[92]

P. Mapfumo, F. Mtambanengwe, K.E. Giller, S. Mpepereki, Tapping indigenous herbaceous legumes for soil fertility management by resource poor farmers in Zimbabwe, Agric. Ecosyst. Environ. 109 (2005) 221–233.

[93]

H. Nezomba, T.P. Tauro, F. Mtambanengwe, P. Mapfumo, Indigenous legume fallows (indifallows) as an alternative soil fertility resource in smallholder maize cropping systems, Field Crops Res. 115 (2010) 149–157.

[94]

N.I. Gasparri, T. Kuemmerle, P. Meyfroidt, Y. le Polain, H. Kreft de Waroux, The emerging soybean production frontier in Southern Africa: conservation challenges and the role of South-South Telecouplings: the emerging of soybean frontier in Southern Africa, Conserv. Lett. 9 (2016) 21–31.

The Crop Journal
Pages 226-235
Cite this article:
Khojely DM, Ibrahim SE, Sapey E, et al. History, current status, and prospects of soybean production and research in sub-Saharan Africa. The Crop Journal, 2018, 6(3): 226-235. https://doi.org/10.1016/j.cj.2018.03.006
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return