AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Reactions of Triticum urartu accessions to two races of the wheat yellow rust pathogen

Jibin Xiaoa,bLingli DongbHuaibing Jinb,cJuncheng ZhangbKunpu Zhanga,bNa LiuaXinyun HanbHongyuan ZhengdWenming Zhenga( )Daowen Wangb,d( )
State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, Henan, China
State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, Henan, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Triticum urartu (AA, 2n = 2x = 14), a wild grass endemic to the Fertile Crescent (FC), is the progenitor of the A subgenome in common wheat. It belongs to the primary gene pool for wheat improvement. Here, we evaluated the yellow rust (caused by Puccinia striiformis f. sp. tritici, Pst) reactions of 147 T. urartu accessions collected from different parts of the FC. The reactions varied from susceptibility to strong resistance. In general, there were more accessions with stronger resistance to race CYR33 than to CYR 32. In most cases the main form of defense was a moderate resistance characterized by the presence of necrotic/chlorotic lesions with fewer Pst uredinia on the leaves. Forty two accessions displayed resistance to both races. Histological analysis showed that Pst growth was abundant in the compatible interaction but significantly suppressed by the resistant response. Gene silencing mediated by Barley stripe mosaic virus was effective in two T. urartu accessions with different resistance responses, indicating that this method can expedite future functional analysis of resistance genes. Our data suggest that T. urartu is a valuable source of resistance to yellow rust, and represents a model for studying the genetic, genomic and molecular basis underlying interaction between wheat and Pst.

References

[1]

P.R. Shewry, S.J. Hey, The contribution of wheat to human diet and health, Food Energy Secur. 4 (2015) 178–202.

[2]

W.Q. Chen, C. Wellings, X.M. Chen, Z.S. Kang, T.G. Liu, Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici, Mol. Plant Pathol. 15 (2014) 433–446.

[3]

B. Schwessinger, Fundamental wheat stripe rust research in the 21st century, New Phytol. 213 (2017) 1625–1631.

[4]

J.M. Beddow, P.G. Pardey, Y. Chai, T.M. Hurley, D.J. Kriticos, H.J. Braun, R.F. Park, W.S. Cuddy, T. Yonow, Research investment implications of shifts in the global geography of wheat stripe rust, Nat. Plants 1 (2015) 15132.

[5]

J.G. Ellis, E.S. Lagudah, W. Spielmeyer, P.N. Dodds, The past, present and future of breeding rust resistant wheat, Front. Plant Sci. 5 (2014) 641.

[6]

C. Tang, Q. Xu, M. Zhao, X.J. Wang, Z.S. Kang, Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: the emerging genomics era, Crop J. (2018) 60–67.

[7]

T. Marcussen, S.R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, International Wheat Genome Sequencing Consortium, K.S. Jakobsen, B.B. Wulff, B. Steuernagel, K.F. Mayer, O.A. Olsen, Ancient hybridizations among the ancestral genomes of bread wheat, Science 345 (2014), 1250092.

[8]

Y.C. Qiu, R.H. Zhou, X.Y. Kong, S.S. Zhang, J.Z. Jia, Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.), Theor. Appl. Genet. 111 (2005) 1524–1531.

[9]
D.C. Liu, H.G. Zhang, L.Q. Zhang, Z.W. Yuan, M. Hao, Y.L. Zheng, Distant hybridization: a tool for interspecific manipulation of chromosomes, in: A. Pratap, J. Kumar (Eds.), Alien Gene Transfer in Crop Plants, Vol. 1, Springer, New York, USA 2014, pp. 25–42.
[10]
R.A. McIntosh, Y. Yamazaki, J. Dubcovsky, J. Rogers, C. Morris, R. Appels, X.C. Xia, Catalogue of gene symbols for wheat, in: Y. Ogihara, S. Takumi, H. Handa (Eds.), Advances in Wheat Genetics: From Genome to Field, Proceedings of the 12th International Wheat Genetics Symposium, September 8–14, 2013, Yokohama, Japan, Springer, Tokyo, Japan, 2015.
[11]
R.A. McIntosh, J. Dubcovsky, J. Rogers, C. Morris, R. Appels, X. C. Xia, Catalogue of Gene Symbols for Wheat: 2013–2014 Supplement, Komugi-wheat Genetic Resources Database, https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf 2014.
[12]
R.A. McIntosh, J. Dubcovsky, J. Rogers, C. Morris, X.C. Xia, Catalogue of Gene Symbols for Wheat: 2017 Supplement, Komugi-wheat Genetic Resources Database, https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf 2017.
[13]

W. Liu, M. Frick, R. Huel, C.L. Nykiforuk, X. Wang, D.A. Gaudet, F. Eudes, R.L. Conner, A. Kuzyk, Q. Chen, Z. Kang, A. Laroche, The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat, Mol. Plant 7 (2014) 1740–1755.

[14]

S.G. Krattinger, E.S. Lagudah, W. Spielmeyer, R.P. Singh, J. Huerta-Espino, H. McFadden, E. Bossolini, L.L. Selter, B. Keller, A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat, Science 323 (2009) 1360–1363.

[15]

D. Fu, C. Uauy, A. Distelfeld, A. Blechl, L. Epstein, X. Chen, H. Sela, T. Fahima, J. Dubcovsky, A kinase-START gene confers temperature-dependent resistance to wheat stripe rust, Science 323 (2009) 1357–1360.

[16]

J.W. Moore, S. Herrera-Foessel, C. Lan, W. Schnippenkoetter, M. Ayliffe, J. Huerta-Espino, M. Lillemo, L. Viccars, R. Milne, S. Periyannan, X. Kong, W. Spielmeyer, M. Talbot, H. Bariana, J.W. Patrick, P. Dodds, R. Singh, E. Lagudah, A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat, Nat. Genet. 47 (2015) 1494–1498.

[17]

S. Ahmed, H. Bux, A. Rasheed, A.G. Kazi, A. Rauf, T. Mahmood, A. Mujeeb-Kazi, Stripe rust resistance in Triticum durum-T. monococcum and T. durum-T. urartu amphiploids, Australas. Plant Pathol. 43 (2014) 109–113.

[18]

H. Ma, R.P. Singh, A. Mujeeb-Kazi, Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids, Euphytica 94 (1997) 279–286.

[19]

H.Q. Ling, S. Zhao, D. Liu, J. Wang, H. Sun, C. Zhang, H. Fan, D. Li, L. Dong, Y. Tao, C. Gao, H. Wu, Y. Li, Y. Cui, X. Guo, S. Zheng, B. Wang, K. Yu, Q. Liang, W. Yang, X. Lou, J. Chen, M. Feng, J. Jian, X. Zhang, G. Luo, Y. Jiang, J. Liu, Z. Wang, Y. Sha, B. Zhang, H. Wu, D. Tang, Q. Shen, P. Xue, S. Zou, X. Wang, X. Liu, F. Wang, Y. Yang, X. An, Z. Dong, K. Zhang, X. Zhang, M.C. Luo, J. Dvorak, Y. Tong, J. Wang, H. Yang, Z. Li, D. Wang, A. Zhang, J. Wang, Draft genome of the wheat A-genome progenitor Triticum urartu, Nature 496 (2013) 87–90.

[20]

J. Zhang, H. Zheng, Y. Li, H. Li, X. Liu, H. Qin, L. Dong, D. Wang, Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat, Sci. Rep. 6 (2016) 23805.

[21]
W.Q. Chen, L.R. Wu, T.G. Liu, S.C. Xu, S.L. Jin, Y.L. Peng, B.T. Wang, Pathotype dynamics, diversity and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe (yellow) rust in China from 2003 to 2007, Plant Dis. 93 (2009) 1093–1101.
[22]

J. Moldenhauer, B.M. Moerschbacher, A.J. van der Westhuizen, Histological investigation of stripe rust (Puccinia striiformis f. sp. tritici) development in resistant and susceptible wheat cultivars, Plant Pathol. 55 (2006) 469–474.

[23]

M. Ayliffe, R. Devilla, R. Mago, R. White, M. Talbot, A. Pryor, H. Leung, Non host resistance of rice to rust pathogens, Mol. Plant-Microbe Interact. 24 (2011) 1143–1155.

[24]

C. Yuan, C. Li, L.J. Yan, A.O. Jackson, Z.Y. Liu, C.G. Han, J.L. Yu, D.W. Li, A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots, PLoS One 6 (2011), e26468.

[25]

S. Zou, H. Wang, Y. Li, Z. Kong, D. Tang, The NB-LRR gene Pm60 confers powdery mildew resistance in wheat, New Phytol. 218 (2018) 298–309.

[26]

K. Kazan, J.M. Manners, Linking development to defense: auxin in plant-pathogen interactions, Trends Plant Sci. 14 (2009) 373–382.

[27]

B. Huot, J. Yao, B.L. Montgomery, S.Y. He, Growth-defense tradeoffs in plants: a balancing act to optimize fitness, Mol. Plant 7 (2014) 1267–1287.

[28]

H. Tian, T. Liu, L. Gao, W.Q. Chen, Parasitic fitness of four major prevalent races of Puccinia striiformis f. sp. tritici in China, Acta Phytopathol. Sin. 38 (2008) 599–606 (in Chinese with English abstract).

[29]

B.T. Wang, G. Li, Q. Li, F. Wang, Y. Shi, Q. Liu, Z.S. Kang, Parasitic fitness of the major epidemic strains of Puccinia striiformis f. sp. tritici in China, Acta Phytopathol. Sin. 39 (2009) 82-87 (in Chinese with English abstract).

[30]

X. Wang, G. Luo, W. Yang, Y. Li, J. Sun, K. Zhan, D. Liu, A. Zhang, Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu, BMC Plant Biol. 17 (2017) 112.

[31]

M. Moghaddam, B. Ehdaie, J.G. Waines, Genetic diversity in populations of wild diploid wheat Triticum urartu Tum. ex. Gandil. revealed by isozyme markers, Genet. Resour. Crop. Evol. 47 (2000) 323–334.

[32]

B. Liu, T.G. Liu, Z.Y. Zhang, Q.Z. Jia, B.T. Wang, L. Gao, Y.L. Peng, S. Jin, W.Q. Chen, Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China, Acta Phytopathol. Sin. 47 (2017) 681-687 (in Chinese with English abstract).

[33]

International Wheat Genome Sequencing Consortium, A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, Science 345 (2014), 1251788.

The Crop Journal
Pages 509-515
Cite this article:
Xiao J, Dong L, Jin H, et al. Reactions of Triticum urartu accessions to two races of the wheat yellow rust pathogen. The Crop Journal, 2018, 6(5): 509-515. https://doi.org/10.1016/j.cj.2018.03.009

248

Views

3

Downloads

2

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 28 February 2018
Revised: 12 March 2018
Accepted: 16 June 2018
Published: 25 July 2018
© 2018 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return