AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (967.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fast mapping of a chlorophyll b synthesis-deficiency gene in barley (Hordeum vulgare L.) via bulked-segregant analysis with reduced-representation sequencing

Dongdong XuaDan SunbYanling DiaobMinxuan LiuaJia GaoaBin WuaXingmiao YuanaPing LuaZongwen ZhangaJing ZhangaGanggang Guoa( )
Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Food Crops Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150049, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Bulked-segregant analysis coupled with next-generation sequencing (BSA-seq) has emerged as an efficient tool for genetic mapping of single genes or major quantitative trait loci controlling (agronomic) traits of interest. However, such a mapping-by-sequencing approach usually relies on deep sequencing and advanced statistical methods. Application of BSA-Seq based on construction of reduced-representation libraries and allele frequency analysis permitted anchoring the barley pale-green (pg) gene on chromosome 3HL. With further marker-assisted validation, pg was mapped to a 3.9 Mb physical-map interval. In the pg mutant a complete deletion of chlorophyllide a oxygenase (HvCAO) gene was identified. Because the product of this gene converts Chl a to Chl b, the pg mutant is deficient in Chl b. An independent Chl b-less mutant line M4437_2 carried a nonsynonymous substitution (F263L) in the C domain of HvCAO. The study demonstrates an optimized pooling strategy for fast mapping of agronomically important genes using a segregating population.

References

[1]

R.W. Michelmore, I. Paran, R.V. Kesseli, Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 9828-9832.

[2]

J. Xu, B. Wang, Y. Wu, P. Du, J. Wang, M. Wang, C. Yi, M. Gu, G. Liang, Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.), Theor. Appl. Genet. 122 (2011) 365-372.

[3]

H.W. Cai, Z.S. Gao, N. Yuyama, N. Ogawa, Identification of AFLP markers closely linked to the rhm gene for resistance to Southern Corn Leaf Blight in maize by using bulked segregant analysis, Mol. Gen. Genomics. 269 (2003) 299-303.

[4]

N. Chantret, P. Sourdille, M. Röder, M. Tavaud, M. Bernard, G. Doussinault, Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat, Theor. Appl. Genet. 100 (2000) 1217-1224.

[5]

M. Trick, N.M. Adamski, S.G. Mugford, C.C. Jiang, M. Febrer, C. Uauy, Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat, BMC Plant Biol. 12 (2012) 14.

[6]

M.E. Bolger, B. Weisshaar, U. Scholz, N. Stein, B. Usadel, K.F. Mayer, Plant genome sequencing - applications for crop improvement, Curr. Opin. Biotechnol. 26 (2014) 31-37.

[7]

G. Guo, D. Dondup, L. Zhang, S. Hu, X. Yuan, J. Zhang, Identification of SNPs in barley (Hordeum vulgare L.) by deep sequencing of six reduced representation libraries, Crop J. 2 (2014) 419-425.

[8]

J.W. Davey, M.L. Blaxter, RADSeq: next-generation population genetics, Brief. Funct. Genomics 9 (2010) 416-423.

[9]

R.J. Elshire, J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, S.E. Mitchell, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One 6 (2011), e19379.

[10]

N.J. van Orsouw, R.C. Hogers, A. Janssen, F. Yalcin, S. Snoeijers, E. Verstege, H. Schneiders, H. van der Poel, J. van Oeveren, H. Verstegen, M.J. van Eijk, Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes, PLoS One 2 (2007), e1172.

[11]

D.D. Qin, J. Dong, F.C. Xu, G.G. Guo, S.T. Ge, Q. Xu, Y.X. Xu, M.F. Li, Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing, BMC Genomics 16 (2015) 838.

[12]

B. Hartwig, G.V. James, K. Konrad, K. Schneeberger, F. Turck, Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks, Plant Physiol. 160 (2012) 591-600.

[13]

A. Abe, S. Kosugi, K. Yoshida, S. Natsume, H. Takagi, H. Kanzaki, H. Matsumura, C. Mitsuoka, M. Tamiru, H. Innan, L. Cano, S. Kamoun, R. Terauchi, Genome sequencing reveals agronomically important loci in rice using MutMap, Nat. Biotechnol. 30 (2012) 174-178.

[14]

H. Takagi, M. Tamiru, A. Abe, K. Yoshida, A. Uemura, H. Yaegashi, T. Obara, K. Oikawa, H. Utsushi, E. Kanzaki, C. Mitsuoka, S. Natsume, S. Kosugi, H. Kanzaki, H. Matsumura, N. Urasaki, S. Kamoun, R. Terauchi, MutMap accelerates breeding of a salt-tolerant rice cultivar, Nat. Biotechnol. 33 (2015) 445-449.

[15]

S. Liu, C.T. Yeh, H.M. Tang, D. Nettleton, P.S. Schnable, Gene mapping via bulked segregant RNA-Seq (BSR-Seq), PLoS One 7 (2012), e36406.

[16]

A. Pankin, C. Campoli, X. Dong, B. Kilian, R. Sharma, A. Himmelbach, R. Saini, S.J. Davis, N. Stein, K. Schneeberger, M. von Korff, Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley, Genetics 198 (2014) 383-396.

[17]

M. Mascher, M. Jost, J.E. Kuon, A. Himmelbach, A. Assfalg, S. Beier, U. Scholz, A. Graner, N. Stein, Mapping-by-sequencing accelerates forward genetics in barley, Genome Biol. 15 (2014) R87.

[18]

Q. Jia, C. Tan, J. Wang, X.Q. Zhang, J. Zhu, H. Luo, J. Yang, S. Westcott, S. Broughton, D. Moody, C. Li, Marker development using SLAF-seq and whole-genome shotgun strategy to fine-map the semi-dwarf gene ari-e in barley, BMC Genomics 17 (2016) 911.

[19]

J. Sanchez-Martin, B. Steuernagel, S. Ghosh, G. Herren, S. Hurni, N. Adamski, J. Vrana, M. Kubalakova, S.G. Krattinger, T. Wicker, J. Dolezel, B. Keller, B.B.H. Wulff, Rapid gene isolation in barley and wheat by mutant chromosome sequencing, Genome Biol. 17 (2016) 221.

[20]

H. Takagi, A. Abe, K. Yoshida, S. Kosugi, S. Natsume, C. Mitsuoka, A. Uemura, H. Utsushi, M. Tamiru, S. Takuno, H. Innan, L.M. Cano, S. Kamoun, R. Terauchi, QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations, Plant J. 74 (2013) 174-183.

[21]

M.K. Pandey, A.W. Khan, V.K. Singh, M.K. Vishwakarma, Y. Shasidhar, V. Kumar, V. Garg, R.S. Bhat, A. Chitikineni, P. Janila, B. Guo, R.K. Varshney, QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.), Plant Biotechnol. J. 15 (2017) 927-941.

[22]

K. Schneeberger, S. Ossowski, C. Lanz, T. Juul, A.H. Petersen, K.L. Nielsen, J.E. Jorgensen, D. Weigel, S.U. Andersen, SHOREmap: simultaneous mapping and mutation identification by deep sequencing, Nat. Methods 6 (2009) 550-551.

[23]

H. Sun, K. Schneeberger, SHOREmap v3.0: fast and accurate identification of causal mutations from forward genetic screens, Methods Mol. Biol. 1284 (2015) 381-395.

[24]

N. Kurata, K. Miyoshi, K. Nonomura, Y. Yamazaki, Y. Ito, Rice mutants and genes related to organ development, morphogenesis and physiological traits, Plant Cell Physiol. 46 (2005) 48-62.

[25]

X.G. Lv, Y.F. Shi, X. Xu, Y.L. Wei, H.M. Wang, X.B. Zhang, J.L. Wu, Oryza sativa chloroplast signal recognition particle 43 (OscpSRP43) is required for chloroplast development and photosynthesis, PLoS One 10 (2015), e0143249.

[26]

D. Von Wettstein, S. Gough, C.G. Kannangara, Chlorophyll biosynthesis, Plant Cell 7 (1995) 1039-1057.

[27]

U. Olsson, N. Sirijovski, M. Hansson, Characterization of eight barley xantha-f mutants deficient in magnesium chelatase, Plant Physiol. Biochem. 42 (2004) 557-564.

[28]

M. Yuan, D.W. Zhang, Z.W. Zhang, Y.E. Chen, S. Yuan, Y.R. Guo, H.H. Lin, Assembly of NADPH: protochlorophyllide oxidoreductase complex is needed for effective greening of barley seedlings, J. Plant Physiol. 169 (2012) 1311-1316.

[29]

S. Reinbothe, C. Reinbothe, H. Holtorf, K. Apel, Two NADPH: protochlorophyllide oxidoreductases in barley: evidence for the selective disappearance of PORA during the light induced greening of etiolated seedlings, Plant Cell 7 (1995) 1933-1940.

[30]

A.H. Mueller, C. Dockter, S.P. Gough, U. Lundqvist, D. von Wettstein, M. Hansson, Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase, Plant Cell Physiol. 53 (2012) 1232-1246.

[31]

R. Wang, F. Yang, X.Q. Zhang, D. Wu, C. Tan, S. Westcott, S. Broughton, C. Li, W. Zhang, Y. Xu, Characterization of a thermo-inducible chlorophyll-deficient mutant in barley, Front. Plant Sci. 8 (2017) 1936.

[32]

D.I. Arnon, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol. 24 (1949) 1-15.

[33]
J.D. Clarke, Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation, Cold Spring Harbor Protocols, Issue 3, Volume 4, Cold Spring Harbor Laboratory Press, 2009https://doi.org/10.1101/pdb.prot5177.
[34]

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J. 17 (2011) 10-12.

[35]

M. Mascher, H. Gundlach, A. Himmelbach, S. Beier, S.O. Twardziok, T. Wicker, V. Radchuk, C. Dockter, P.E. Hedley, J. Russell, M. Bayer, L. Ramsay, H. Liu, G. Haberer, X.Q. Zhang, Q. Zhang, R.A. Barrero, L. Li, S. Taudien, M. Groth, M. Felder, A. Hastie, H. Simkova, H. Stankova, J. Vrana, S. Chan, M. Munoz-Amatriain, R. Ounit, S. Wanamaker, D. Bolser, C. Colmsee, T. Schmutzer, L. Aliyeva-Schnorr, S. Grasso, J. Tanskanen, A. Chailyan, D. Sampath, D. Heavens, L. Clissold, S. Cao, B. Chapman, F. Dai, Y. Han, H. Li, X. Li, C. Lin, J.K. McCooke, C. Tan, P. Wang, S. Wang, S. Yin, G. Zhou, J.A. Poland, M.I. Bellgard, L. Borisjuk, A. Houben, J. Dolezel, S. Ayling, S. Lonardi, P. Kersey, P. Langridge, G.J. Muehlbauer, M.D. Clark, M. Caccamo, A.H. Schulman, K.F.X. Mayer, M. Platzer, T.J. Close, U. Scholz, M. Hansson, G. Zhang, I. Braumann, M. Spannagl, C. Li, R. Waugh, N. Stein, A chromosome conformation capture ordered sequence of the barley genome, Nature 544 (2017) 427-433.

[36]
H. Li, Aligning Sequence Reads, Clone Sequences and Assembly Contigs With BWA-MEM, 2013 (arXiv 1303.3997 [qbio.GN]).
[37]

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The sequence alignment/map format and SAM tools, Bioinformatics 25 (2009) 2078-2079.

[38]

A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, S.G. Rozen, Primer3—new capabilities and interfaces, Nucleic Acids Res. (e115–e115).

[39]

R. Fekih, H. Takagi, M. Tamiru, A. Abe, S. Natsume, H. Yaegashi, S. Sharma, H. Kanzaki, H. Matsumura, H. Saitoh, C. Mitsuoka, H. Utsushi, A. Uemura, E. Kanzaki, S. Kosugi, K. Yoshida, L. Cano, S. Kamoun, R. Terauchi, MutMap+: genetic mapping and mutant identification without crossing in rice, PLoS One 8 (2013), e68529.

[40]

A. Yamasato, N. Nagata, R. Tanaka, A. Tanaka, The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis, Plant Cell 17 (2005) 1585-1597.

The Crop Journal
Pages 58-64
Cite this article:
Xu D, Sun D, Diao Y, et al. Fast mapping of a chlorophyll b synthesis-deficiency gene in barley (Hordeum vulgare L.) via bulked-segregant analysis with reduced-representation sequencing. The Crop Journal, 2019, 7(1): 58-64. https://doi.org/10.1016/j.cj.2018.07.002

255

Views

3

Downloads

10

Crossref

N/A

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 07 May 2018
Revised: 04 July 2018
Accepted: 20 July 2018
Published: 04 August 2018
© 2018 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return