AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Mapping loci controlling fatty acid profiles, oil and protein content by genome-wide association study in Brassica napus

Minqiang Tanga,bYuanyuan ZhangaYueying LiuaChaobo Tonga,cXiaohui ChengaWei ZhuaZaiyun LibJunyan Huanga,c( )Shengyi Liua,c
The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei, China
Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Science, Hubei University, Wuhan 430062, Hubei, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Optimizing the profile and quantity of fatty acids in rapeseed (Brassica napus L.) is critical for maximizing the value of edible oil and biodiesel. However, selection of these complex seed quality traits is difficult before haplotypes controlling their contents are identified. To efficiently identify genetic loci influencing these traits and underlying candidate genes and networks, we performed a genome-wide association study (GWAS) of eight seed quality traits (oil and protein content, palmitic, stearic, oleic, linoleic, eicosenoic and erucic acids content). The GWAS population comprised 370 diverse accessions, which were phenotyped in five environments and genotyped using 60K SNP arrays. The results indicated that oil and protein contents generally showed negative correlations, while fatty acid contents showed positive or negative correlations, with palmitic and erucic acid contents directly affecting oil content. Seven SNPs on five chromosomes were associated with both seed oil and protein content, and five genes orthologous to genes in Arabidopsis thaliana were predicted as candidates. From resequencing data, besides known haplotypes in BnaA.FAE1.a and BnaC.FAE1.a, three accessions harboring a new haplotype conferring moderate erucic acid content were identified. Interestingly, in a haplotype block, one haplotype was associated with high palmitic acid content and low oil content, while the others showed the reverse effects. This finding was consistent with a negative correlation between palmitic acid and oil contents, suggesting historical selection for high oil content. The identification by this study of genetic variation and complex correlations of eight seed quality traits may be beneficial for crop selection strategies.

References

[1]

B. Chalhoub, F. Denoeud, S. Liu, I.A. Parkin, H. Tang, Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome, Science 345 (2014) 950-953.

[2]

X. Wang, H. Wang, J. Wang, R. Sun, J. Wu, The genome of the mesopolyploid crop species Brassica rapa, Nat. Genet. 43 (2012) 1035-1039.

[3]

S. Liu, Y. Liu, X. Yang, C. Tong, D. Edwards, The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes, Nat. Commun. 5 (2014) 3930.

[4]

A.L. Harper, M. Trick, J. Higgins, F. Fraser, L. Clissold, Associative transcriptomics of traits in the polyploid crop species Brassica napus, Nat. Biotechnol. 30 (2012) 798-802.

[5]

H. Liu, Genetic and Breeding in Rapeseed, China Agricultural University Press, Beijing, China, 2000.

[6]

Y. Xu, Molecular Plant Breeding, CABI, Wallingford, Oxfordshire, UK, 2010 620–623.

[7]

G.C. Barker, T.R. Larson, I.A. Graham, J.R. Lynn, G.J. King, Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and quantitative trait loci analysis of the Brassica C genome, Plant Physiol. 144 (2007) 1827-1842.

[8]

B. Grami, B.R. Stefansson, R.J. Baker, Genetics of protein and oil content in summer rape: heritability, number of effective factors, and correlation, Can. J. Plant Sci. 57 (1977) 937-943.

[9]

M. Eskandari, E.R. Cober, I. Rajcan, Genetic control of soybean seed oil: Ⅱ. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield, Theor. Appl. Genet. 126 (2013) 1677-1687.

[10]

G. Chen, J. Geng, M. Rahman, X. Liu, J. Tu, T. Fu, G. Li, P.B.E. McVetty, M. Tahir, Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus), Euphytica 175 (2010) 161-174.

[11]

N. Li, J. Shi, X. Wang, G. Liu, H. Wang, A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.), BMC Plant Biol. 14 (2014) 114.

[12]

J. Shi, R. Li, J. Zou, Y. Long, J. Meng, A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.), PLoS One 6 (2011) e21645.

[13]

R.K. Downey, B.M. Craig, Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.), J. Am. Oil Chem. Soc. 41 (1964) 475-478.

[14]

W. Ecke, M. Uzunova, K. Weißleder, Mapping the genome of rapeseed (Brassica napus L.): Ⅱ. Localization of genes controlling erucic acid synthesis and seed oil content, Theor. Appl. Genet. 91 (1995) 972-977.

[15]

G. Wu, Y. Wu, L. Xiao, X. Li, C. Lu, Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene, Theor. Appl. Genet. 116 (2008) 491-499.

[16]

F. Li, B. Chen, K. Xu, J. Wu, W. Song, I. Bancroft, A.L. Harper, M. Trick, S. Liu, G. Gao, N. Wang, G. Yan, J. Qiao, J. Li, H. Li, X. Xiao, T. Zhang, X. Wu, Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.), DNA Res. 21 (2014) 355-367.

[17]

N. Wang, L. Shi, F. Tian, H. Ning, X. Wu, Y. Long, J. Meng, Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents, BMC Plant Biol. 10 (2010) 137.

[18]

H.H.M. Draisma, R. Pool, M. Kobl, R. Jansen, A.K. Petersen, Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels, Nat. Commun. 6 (2015) 7208.

[19]

W. Wen, D. Li, X. Li, Y. Gao, W. Li, H. Li, J. Liu, H. Liu, W. Chen, J. Luo, J. Yan, Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights, Nat. Commun. 5 (2014) 3438.

[20]

J. Luo, Metabolite-based genome-wide association studies in plants, Curr. Opin. Plant Biol. 24 (2015) 31-38.

[21]

L. Gan, X. Sun, L. Jin, G. Wang, J. Xu, Z. Wei, T. Fu, Establishment of math models of NIRS analysis for oil and protein contents in seed of Brassica napus, Sci. Agric. Sin. 36 (2003) 1609-1613 (in Chinese with English abstract).

[22]

J. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull. 19 (1987) 11-15.

[23]

Q. Tang, C. Zhang, Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research, Insect Sci. 20 (2013) 254-260.

[24]

J.K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using multilocus genotype data, Genetics 155 (2000) 945-959.

[25]

G. Evanno, S. Regnaut, J. Goudet, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol. 14 (2005) 2611-2620.

[26]

P.J. Bradbury, Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, E.S. Buckler, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633-2635.

[27]

P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003) 2498-2504.

[28]

K. Liu, S.V. Muse, PowerMarker: an integrated analysis environment for genetic marker analysis, Bioinformatics 21 (2005) 2128-2129.

[29]

P. Librado, J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics 25 (2009) 1451-1452.

[30]

D. Botstein, R.L. White, M. Skolnick, R.W. Davis, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32 (1980) 314-331.

[31]

Z. Zhang, E. Ersoz, C.Q. Lai, R.J. Todhunter, H.K. Tiwari, M.A. Gore, P.J. Bradbury, J. Yu, D.K. Arnett, J.M. Ordovas, E.S. Buckler, Mixed linear model approach adapted for genome-wide association studies, Nat. Genet. 42 (2010) 355-360.

[32]

D. Cai, Y. Xiao, W. Yang, W. Ye, B. Wang, M. Younas, J. Wu, K. Liu, Association mapping of six yield-related traits in rapeseed (Brassica napus L.), Theor. Appl. Genet. 127 (2014) 85-96.

[33]

L. Qian, W. Qian, R.J. Snowdon, Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome, BMC Genomics 15 (2014) 1170.

[34]

C. Jiang, J. Shi, R. Li, Y. Long, H. Wang, D. Li, J. Zhao, J. Meng, Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.), Theor. Appl. Genet. 127 (2014) 957-968.

[35]

Y. Li-Beisson, B. Shorrosh, F. Beisson, M.X. Andersson, V. Arondel, P.D. Bates, D. Bird, A. Debono, Acyl-lipid metabolism, Arabidopsis Book 8 (2010) e0133.

[36]

A.J. Moreno-Pérez, M. Venegas-Calerón, F.E. Vaistij, J.J. Salas, T.R. Larson, R. Garcés, I.A. Graham, E. Martínez-Force, Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds, Planta 235 (2012) 629-639.

[37]

J. Callis, R.D. Vierstra, Protein degradation in signaling, Curr. Opin. Plant Biol. 3 (2000) 381-386.

[38]

S. Streb, S.C. Zeeman, Starch metabolism in Arabidopsis, Arabidopsis Book 10 (2012) e0160.

[39]

D.E. Reich, M. Cargill, S. Bolk, J. Ireland, P.C. Sabeti, D.J. Richter, T. Lavery, R. Kouyoumjian, S.F. Farhadian, R. Ward, E.S. Lander, Linkage disequilibrium in the human genome, Nature 411 (2001) 199-204.

[40]

K. Palaisa, M. Morgante, S. Tingey, A. Rafalski, Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 9885-9890.

[41]

J. Han, W. Lühs, K. Sonntag, U. Zähringer, D.S. Borchardt, F.P. Wolter, E. Heinz, M. Frentzen, Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L, Plant Mol. Biol. 46 (2001) 229-239.

[42]

N. Körber, A. Bus, J. Li, J. Higgins, I. Bancroft, E.E. Higgins, I.A. Parkin, B. Salazar-Colqui, R.J. Snowdon, B. Stich, Seedling development traits in Brassica napus examined by gene expression analysis and association mapping, BMC Plant Biol. 15 (2015) 136.

[43]

L. Wei, H. Jian, K. Lu, F. Filardo, N. Yin, L. Liu, C. Qu, W. Li, H. Du, J. Li, Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus, Plant Biotechnol. J. 14 (2015) 1368-1380.

[44]

M. Tang, X. Cheng, C. Tong, Y. Liu, C. Zhao, C. Dong, J. Yu, X. Ma, J. Huang, S. Liu, Genome-wide association analysis of plant height in rapeseed (Brassica napus), Acta Agron. Sin. 41 (2015) 1121-1126 (in Chinese with English abstract).

[45]

F. Li, B. Chen, K. Xu, G. Gao, G. Yan, J. Qiao, J. Li, H. Li, L. Li, X. Xiao, T. Zhang, T. Nishio, X. Wu, A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus), Plant Sci. 242 (2016) 169-177.

[46]

L. Xu, K. Hu, Z. Zhang, C. Guan, S. Chen, W. Hua, J. Li, J. Wen, B. Yi, J. Shen, C. Ma, J. Tu, T. Fu, Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.), DNA Res. 23 (2016) 43-52.

[47]

N. Carreno-Quintero, H.J. Bouwmeester, J.J. Keurentjes, Genetic analysis of metabolome-phenotype interactions: from model to crop species, Trends Genet. 29 (2013) 41-50.

[48]

K.M. Olsen, M.D. Purugganan, Molecular evidence on the origin and evolution of glutinous rice, Genetics 162 (2002) 941-950.

[49]

J. Zhao, H.C. Becker, D. Zhang, Y. Zhang, W. Ecke, Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield, Theor. Appl. Genet. 113 (2006) 33-38.

[50]

R.C. Shoemaker, K. Polzin, J. Labate, J. Specht, E.C. Brummer, T. Olson, N. Young, V. Concibido, J. Wilcox, J.P. Tamulonis, G. Kochert, H.R. Boerma, Genome duplication in soybean (Glycine subgenus soja), Genetics 144 (1996) 329-338.

[51]

M. Kanai, S. Mano, M. Kondo, M. Hayashi, M. Nishimura, Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds, Plant Biotechnol. J. 14 (2016) 1241-1250.

The Crop Journal
Pages 217-226
Cite this article:
Tang M, Zhang Y, Liu Y, et al. Mapping loci controlling fatty acid profiles, oil and protein content by genome-wide association study in Brassica napus. The Crop Journal, 2019, 7(2): 217-226. https://doi.org/10.1016/j.cj.2018.10.007

294

Views

2

Downloads

19

Crossref

N/A

Web of Science

19

Scopus

3

CSCD

Altmetrics

Received: 20 August 2018
Revised: 13 October 2018
Accepted: 26 November 2018
Published: 19 December 2018
© 2018 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return