AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Identification of a novel seed size associated locus SW9-1 in soybean

Jiajia LiaJinghui ZhaoaYinghui LibYali GaoaSunan HuaaMuhammad NadeemaGenlou Suna,cWenming ZhangaJinfeng HoudXiaobo Wanga( )Lijuan Qiub,( )
School of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Biology Department, Saint Mary's University, Halifax, NS B3H 3C3, Canada
College of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may provide a theoretical basis for improving seed yield. However, there are few reports related to QTL mapping of 100-SW across multiple ecological regions. In this study, 21 loci associated with seed size traits were identified using a genome-wide association of 5361 single nucleotide polymorphisms (SNPs) across three ecoregions in China, which could explain 8.12%–14.25% of the phenotypic variance respectively. A new locus, named as SW9-1 on chromosome 9 that explained 10.05%–10.93% of the seed weight variance was found significantly related to seed size traits, and was not previously reported. The selection effect analysis showed that SW9-1 locus has a relatively high phenotypic effect (13.67) on 100-SW, with a greater contribution by the accessions with bigger seeds (3.69) than the accessions with small seeds (1.66). Increases in seed weight were accompanied by increases in the frequency of SW9-1T allele, with >90% of the bred varieties with a 100-SW >30 g carrying SW9-1T. Analysis of SW9-1 allelic variation in additional soybean accessions showed that SW9-1T allele accounting for 13.83% of the wild accessions, while in 46.55% and 51.57% of the landraces and bred accessions, respectively, this results indicating that the SW9-1 locus has been subjected to artificial selection during the early stages of soybean breeding, especially the utilization of SW9-1T in edamame for big seed. These results suggest that SW9-1 is a novel and reliable locus associated with seed size traits, and might have an important implication for increasing soybean seed weight in molecular design breeding. Cloning this locus in future may provide new insights into the genetic mechanisms underlying soybean seed size traits.

References

[1]

Y. Xu, H.N. Li, G.J. Li, X. Wang, L.G. Cheng, Y.M. Zhang, Mapping quantitative trait loci for seed size traits in soybean (Glycine max (L.) Merr.), Theor. Appl. Genet. 122 (2011) 581–594.

[2]

X.B. Wang, Y.H. Li, H.W. Zhang, G.L. Sun, W.M. Zhang, L.J. Qiu, Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean, Mol. Biol. Rep. 42 (2015) 489–496.

[3]

J.S. Burris, O.T. Edje, A.H. Wahab, Effects of seed size on seedling performance in soybeans: Ⅱ. Seedling growth and photosynthesis and field performance, Crop Sci. 13 (1973) 207–210.

[4]

T.J. Smith, H.M. Camper, Effect of seed size on soybean performance, Agron. J. 67 (1975) 681–684.

[5]
J.W. Burton, Quantitative genetics: results relevant to soybean breeding, in: J.R. Wilcox (Ed.), Soybeans: Improvement, Production and Uses, 2nd editionAmerican Society of Agronomy, Madison, WI, USA 1987, pp. 211–247.
[6]

J.P. Zhang, Q.J. Song, P.B. Cregan, G.L. Jiang, Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max), Theor. Appl. Genet. 129 (2016) 117–130.

[7]

H.Z. Liang, W.D. Li, H. Wang, X.J. Fang, Genetic effects on seed traits in soybean, Acta Genet. Sin. 32 (2005) 1199–1204 (in Chinese with English abstract).

[8]

W.L. Teng, Y.P. Han, Y.P. Du, D.S. Sun, Z.C. Zhang, L.J. Qiu, G.L. Sun, W.B. Li, QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.), Heredity 102 (2009) 372–380.

[9]

L.M. Mansur, J.H. Orf, K.G. Lark, Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max (L). Merr.), Theor. Appl. Genet. 86 (1993) 914–918.

[10]

J.Z. Li, X.Q. Huang, F. Heinrichs, M.W. Ganal, M.S. Röder, Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley, Theor. Appl. Genet. 110 (2005) 356–363.

[11]

D.R. Hao, H. Cheng, Z.T. Yin, S.Y. Cui, D. Zhang, H. Wang, D.Y. Yu, Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments, Theor. Appl. Genet. 124 (2012) 447–458.

[12]

M.A.R. Mian, M.A. Bailey, J.P. Tamulonis, E.R. Shipe, , W.A. Parrott, D.A. Ashley, R.S. Hussey, H.R. Boerma, Molecular markers associated with seed weight in two soybean populations, Theor. Appl. Genet. 93 (1996) 1011–1016.

[13]

Y.N. Sun, J.B. Pan, X.L. Shi, X.Y. Du, Q. Wu, Z.M. Qi, H.W. Jiang, D.W. Xin, C.Y. Liu, G.H. Hu, Q.S. Chen, Multi-environment mapping and meta-analysis of 100-seed weight in soybean, Mol. Biol. Rep. 39 (2012) 9435–9443.

[14]
F.L. Allen, Usefulness of plant genome mapping to plant breeding, in: P. Gresshoff (Ed.), Plant Genome Analysis, CRC Press, Boca Raton, Florida, USA 1994, pp. 11–18.
[15]

Q.J. Song, L.F. Marek, R.C. Shoemaker, K.G. Lark, V.C. Concibido, X. Delannay, J.E. Specht, P.B. Cregan, A new integrated genetic linkage map of the soybean, Theor. Appl. Genet. 109 (2004) 122–128.

[16]

Q.J. Song, G.F. Jia, Y.L. Zhu, D. Grant, R.T. Nelson, E.Y. Hwang, D.L. Hyten, P.B. Cregan, Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean, Crop Sci. 50 (2010) 1950–1960.

[17]

Q.J. Song, J. Jenkins, G.F. Jia, D.L. Hyten, V. Pantalone, S.A. Jackson, J. Schmutz, P.B. Cregan, Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01, BMC Genomics 17 (2016) 3.

[18]

I.Y. Choi, D.L. Hyten, L.K. Matukumalli, Q.J. Song, J.M. Chaky, C.V. Quigley, K. Chase, K.G. Lark, R.S. Reiter, M.S. Yoon, E.Y. Hwang, S.I. Yi, N.D. Young, C.P. Randy, C. van Tassell, E.J. Specht, P.B. Cregan, A soybean transcript map: gene distribution, haplotype and single nucleotide polymorphism analysis, Genetics 176 (2007) 685–696.

[19]

T.Y. Hwang, T. Sayama, M. Takahashi, Y. Takada, Y. Nakamoto, H. Funatsuki, H. Hisano, S. Sasamoto, S. Sato, S. Tabata, I. Kono, M. Hoshi, M. Hanawa, C. Yano, Z. Xia, K. Harada, K. Kitamura, M. Ishimoto, High-density integrated linkage map based on SSR markers in soybean, DNA Res. 16 (2009) 213–225.

[20]

D.L. Hyten, I.Y. Choi, Q.J. Song, J.E. Specht, T.E. Carter Jr., R.C. Shoemaker, E.Y. Hwang, L.K. Matukumalli, P.B. Cregan, A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping, Crop Sci. 50 (2010) 960–968.

[21]

M. Akond, S.M. Liu, L. Schoener, J.A. Anderson, S.K. Kantartzi, K. Meksem, Q.J. Song, D.C. Wang, Z.X. Wen, A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina infinium bead chip genotyping array, J. Plant Genome Sci. 1 (2013) 80–89.

[22]

B. Li, L. Tian, J.Y. Zhang, L. Huang, F.X. Han, S.R. Yan, L.Z. Wang, Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max, BMC Genomics 15 (2014) 1086.

[23]

S. Lee, K.R. Freewalt, L.K. Mchal, Q.J. Song, T.H. Jun, A.P. Michel, A.E. Dorrance, M.A.R. Mian, A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K, Mol. Breed. 35 (2015) 28.

[24]

D.L. Hyten, V.R. Pantalone, C.E. Sams, A.M. Saxton, D. Landau-Ellis, T.R. Stefaniak, M.E. Schmidt, Seed quality QTL in a prominent soybean population, Theor. Appl. Genet. 109 (2004) 552–561.

[25]

Y.P. Han, D.M. Li, D. Zhu, H.Y. Li, X.P. Li, W.L. Teng, W.B. Li, QTL analysis of soybean seed weight across multi-genetic backgrounds and environments, Theor. Appl. Genet. 125 (2012) 671–683.

[26]

J.H. Orf, K. Chase, F.R. Adler, L.M. Mansur, K.G. Lark, Genetics of soybean agronomic traits: Ⅱ. Interactions between yield quantitative trait loci in soybean, Crop Sci. 39 (1999) 1652–1657.

[27]

M.D. Smalley, W.R. Fehr, S.R. Cianzio, F. Han, S.A. Sebastian, L.G. Streit, Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm, Crop Sci. 44 (2004) 436–442.

[28]

P. Salas, J.C. Oyarzo-Llaipen, D. Wang, K. Chase, L. Mansur, Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.), Theor. Appl. Genet. 113 (2006) 1459–1466.

[29]

J.Y. Gai, Y.J. Wang, X.L. Wu, S.Y. Chen, A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean, Front. Agric. China 1 (2007) 1–7.

[30]

P. Guzman, B. Neece, D.J.S. Martin, S. LeRoy, A. Grau, C. Hughes, T. Nelson, QTL associated with yield in three backcross-derived populations of soybean, Crop Sci. 47 (2007) 111–122.

[31]

Y.H. Li, R.X. Guan, Z.X. Liu, Y.S. Ma, L.X. Wang, L.H. Li, F.Y. Lin, W.J. Luan, P.Y. Chen, Z. Yan, Y. Guan, L. Zhu, X.C. Ning, M.J.M. Smulders, W. Li, R.H. Piao, Y.H. Cui, Z.M. Yu, M. Guan, R.Z. Chang, A.F. Hou, A.N. Shi, B. Zhang, S.L. Zhu, L.J. Qiu, Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China, Theor. Appl. Genet. 117 (2008) 857–871.

[32]

Y.H. Li, W. Li, C. Zhang, L. Yang, R.Z. Chang, B.S. Gaut, L.J. Qiu, Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single nucleotide polymorphism loci, New Phytol. 188 (2010) 242–253.

[33]

Y.H. Li, S.C. Zhao, J.X. Ma, D. Li, L. Yan, J. Li, X.T. Qi, X.S. Guo, L. Zhang, W.M. He, R.Z. Chang, Q.S. Liang, Y. Guo, C. Ye, X.B. Wang, Y. Tao, R.X. Guan, J.Y. Wang, Y.L. Liu, L.G. Jin, X.Q. Zhang, Z.X. Liu, L.J. Zhang, J. Chen, K.J. Wang, R. Nielsen, R.Q. Li, P.Y. Chen, W.B. Li, J.C. Reif, M. Purugganan, J. Wang, M.C. Zhang, J. Wang, L.J. Qiu, Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing, BMC Genomics 14 (2013) 579.

[34]

Y.H. Li, G.Y. Zhou, J.X. Ma, W.K. Jiang, L.G. Jin, Z.H. Zhang, Y. Guo, J.B. Zhang, Y. Sui, L.T. Zheng, S.S. Zhang, Q.Y. Zuo, X.H. Shi, Y.F. Li, W.K. Zhang, Y.Y. Hu, G.Y. Kong, H.L. Hong, B. Tan, J. Song, Z.X. Liu, Y.S. Wang, H. Ruan, C.K.L. Yeung, J. Liu, H.L. Wang, L.J. Zhang, R.X. Guan, K.J. Wang, W.B. Li, S.Y. Chen, R.Z. Chang, Z. Jiang, S.A. Jackson, R.Q. Li, L.J. Qiu, De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits, Nat. Biotechnol. 32 (2014) 1045–1052.

[35]

J.K. Yang, M.K. Wak, M.Y. Kim, K. Van, S.H. Lee, Association analysis of candidate gene for seed weight regulation in soybean, Br. J. Pharmacol. 169 (2009) 462–476.

[36]

Y. Niu, Y. Xu, X.F. Liu, S.X. Yang, S.P. Wei, F.T. Xie, Y.M. Zhang, Association mapping for seed size and shape traits in soybean cultivars, Mol. Breed. 31 (2013) 785–794.

[37]

T.H. Jun, K. Freewalt, A.P. Michel, R. Mian, Identification of novel QTL for leaf traits in soybean, Plant Breed. 133 (2014) 61–66.

[38]

S. Kato, T. Sayama, K. Fujii, S. Yumoto, Y. Kono, T.Y. Hwang, A. Kikuchi, Y. Takada, Y. Tanaka, T. Shiraiwa, M. Ishimoto, A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds, Theor. Appl. Genet. 127 (2014) 1365–1374.

[39]

Z.K. Zhou, Y. Jiang, Z. Wang, Z.H. Guo, J. Lyu, W.Y. Li, Y.J. Yu, L.P. Shu, Y.J. Zhao, Y.M. Ma, C. Fang, Y.T. Shen, T.F. Liu, C.C. Li, Q. Li, M. Wu, M. Wang, Y.S. Wu, Y. Dong, W.T. Wan, X. Wang, Z.L. Ding, Y.D. Gao, H. Xiang, B.G. Zhu, S.H. Lee, W. Wang, Z.X. Tian, Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean, Nat. Biotechnol. 33 (2015) 408–414.

[40]

T.H.E. Meuwissen, B.J. Hayes, M.E. Goddard, Prediction of total genetic value using genome-wide dense marker maps, Genetics 157 (2001) 1819–1829.

[41]

S. Atwell, Y.S. Huang, B.J. Vilhjálmsson, G. Willems, M. Horton, Y. Li, D.Z. Meng, A. Platt, A.M. Tarone, T.T. Hu, R. Jiang, N.W. Muliyati, X. Zhang, M.A. Amer, I. Baxter, B. Brachi, J. Chory, C. Dean, M. Debieu, J. de Meaux, J.R. Ecker, N. Faure, J.M. Kniskern, J.D.G. Jones, T. Michael, A. Nemri, F. Roux, D.E. Salt, C.L. Tang, M. Todesco, B. Traw, D. Weigel, P. Marjoram, J.O. Borevitz, J. Bergelson, M. Nordborg, Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines, Nature 465 (2010) 627–631.

[42]

J.D. Burridge, H.M. Schneider, B.L. Huynh, P.A. Roberts, A. Bucksch, J.P. Lynch, Genome-wide association mapping and agronomic impact of cowpea root architecture, Theor. Appl. Genet. 130 (2017) 419–431.

[43]

Q.H. Zhou, D.P. Han, A.S. Mason, C. Zhou, W. Zheng, Y.Z. Li, C.J. Wu, D.H. Fu, Y.J. Huang, Earliness traits in rapeseed (Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis, DNA Res. 25 (2017) 229–244.

[44]

Y.Y. Shi, L.L. Gao, Z.C. Wu, X.J. Zhang, M.M. Wang, C.S. Zhang, F. Zhang, Y.L. Zhou, Z.K. Li, Genome-wide association study of salt tolerance at the seed germination stage in rice, BMC Plant Biol. 17 (2017) 92.

[45]

J.A. Rafalski, Association genetics in crop improvement, Curr. Opin. Plant Biol. 13 (2010) 174–180.

[46]

X.H. Huang, X.G. Wei, T. Sang, Q. Zhao, Q. Feng, Y. Zhao, C.R. Zhu, T.T. Lu, Z.W. Zhang, M. Li, D.L. Fan, Y.L. Guo, A.H. Wang, L. Wang, L.W. Deng, W.J. Li, Y.Q. Lu, Q.J. Weng, K.Y. Liu, T. Huang, T.Y. Zhou, Y.F. Jing, W. Li, Z. Lin, E.S. Buckler, Q. Qian, Q.F. Zhang, J.Y. Li, B. Han, Genome-wide association studies of 14 agronomic traits in rice landraces, Nat. Genet. 42 (2010) 961–967.

[47]

J.S. Lai, R.Q. Li, X. Xu, W.W. Jin, M.L. Xu, H.N. Zhao, Z.K. Xiang, W.B. Song, K. Ying, M. Zhang, Y.P. Jiao, P.X. Ni, J.G. Zhang, D. Li, X.S. Guo, K.X. Ye, M. Jian, B. Wang, H.S. Zheng, H.Q. Liang, X.Q. Zhang, S.C. Wang, S.J. Chen, J.S. Li, Y. Fu, N.M. Springer, H.M. Yang, J. Wang, J.R. Dai, P.S. Schnable, J. Wang, Genome-wide patterns of genetic variation among elite maize inbred lines, Nat. Genet. 42 (2010) 1027–1030.

[48]

H. Li, Z.Y. Peng, X.H. Yang, W.D. Wang, J.J. Fu, J.H. Wang, Y.J. Han, Y.C. Chai, T.T. Guo, N. Yang, J. Liu, M.L. Warburton, Y.B. Cheng, X.M. Hao, P. Zhang, J.Y. Zhao, Y.J. Liu, G.Y. Wang, J.S. Li, J.B. Yan, Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels, Nat. Genet. 45 (2013) 43–50.

[49]

G.P. Morris, P. Ramu, S.P. Deshpande, C.T. Hash, T. Shah, H.D. Upadhyaya, O. Riera-Lizarazu, P.J. Brown, C.B. Acharya, S.E. Mitchell, J. Harriman, J.C. Glaubitz, E.S. Buckler, S. Kresovich, Population genomic and genome-wide association studies of agroclimatic traits in sorghum, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 453–458.

[50]

E.Y. Hwang, Q.J. Song, G.F. Jia, J.E. Specht, D.L. Hyten, J. Costa, P.B. Cregan, A genome-wide association study of seed protein and oil content in soybean, BMC Genomics 15 (2014) 1.

[51]

Z.X. Wen, R.J. Tan, J.Z. Yuan, C. Bales, W.Y. Du, S.C. Zhang, M.I. Chilvers, C. Schmidt, Q.J. Song, P.B. Cregan, D.C. Wang, Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean, BMC Genomics 15 (2014) 809.

[52]

J.P. Zhang, Q.J. Song, P.B. Cregan, R.L. Nelson, X.Z. Wang, J.X. Wu, G.L. Jiang, Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm, BMC Genomics 16 (2015) 217.

[53]

Y.H. Zhang, J.B. He, Y.F. Wang, G.N. Xing, J.M. Zhao, Y. Li, S.P. Yang, R.G. Palmer, T.J. Zhao, J.Y. Gai, Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes, J. Exp. Bot. 66 (2015) 6311–6325.

[54]

K.P. Kulkarni, S. Asekova, D.H. Lee, K. Bilyeu, J.T. Song, J.D. Lee, Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja), Crop Pasture Sci. 68 (2017) 148–155.

[55]

X. Lu, Q. Xiong, T. Cheng, Q.T. Li, X.L. Liu, Y.D. Bi, W. Li, W.K. Zhang, B. Ma, Y.C. Lai, W.G. Du, W.Q. Man, S.Y. Chen, J.S. Zhang, A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight, Mol. Plant 10 (2017) 670–684.

[56]

N.M. Adamski, E. Anastasiou, S. Eriksson, C.M. O'Neill, M. Lenhard, Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 20115–20120.

[57]

W.J. Fang, Z.B. Wang, R.F. Cui, J. Li, Y.H. Li, Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana, Plant J. 70 (2012) 929–939.

[58]

J.W. Wang, R. Schwab, B. Czech, E. Mica, D. Weigel, Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana, Plant Cell 20 (2008) 1231–1243.

[59]

L. Du, S.D. Wang, C.M. He, B. Zhou, Y.L. Ruan, H.X. Shou, Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis, J. Exp. Bot. 68 (2017) 1955–1972.

[60]

H.W. Kang, Y.G. Cho, U.H. Yoon, M.Y. Eun, A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed, Plant Mol. Biol. Report. 16 (1998) 90.

[61]

J.K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using multilocus genotype data, Genetics 155 (2000) 945–959.

[62]

G. Evanno, S. Regnaut, J. Goudet, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol. 14 (2005) 2611–2620.

[63]

F. Breseghello, M.E. Sorrells, Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars, Genetics 172 (2006) 1165–1177.

[64]

H. Funatsuki, K. Kawaguchi, S. Matsuba, Y. Sato, M. Ishimoto, Mapping of QTL associated with chilling tolerance during reproductive growth in soybean, Theor. Appl. Genet. 111 (2005) 851–861.

[65]

X.H. Yang, J.B. Yan, T. Shah, M.L. Warburton, Q. Li, L. Li, Y.F. Gao, Y.C. Chai, Z.Y. Fu, Y. Zhou, S.T. Xu, G.H. Bai, Y.J. Meng, Y.P. Zheng, J.S. Li, Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection, Theor. Appl. Genet. 121 (2010) 417–431.

[66]

O.J. Hardy, X. Vekemans, SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels, Mol. Ecol. Notes 2 (2002) 618–620.

[67]

P.J. Bradbury, Z.W. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, E.S. Buckler, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633–2635.

[68]

J. Yu, G. Pressoir, W.H. Briggs, B.I. Vroh, M. Yamasaki, J.F. Doebley, M.D. McMullen, B.S. Gaut, D.M. Nielsen, J.B. Holland, S. Kresovich, E.S. Buckler, A unified mixed-model method for association mapping that accounts for multiple levels of relatedness, Nat. Genet. 38 (2006) 203–208.

[69]

E.H. Roberts, A. Qi, R.H. Ellis, R.J. Summerfield, R.J. Lawn, S. Shanmugasundaram, Use of field observations to characterize genotypic flowering responses to photoperiod and temperature: a soybean exemplar, Theor. Appl. Genet. 93 (1996) 519–533.

[70]

Y.L. Lu, J.B. Yan, C.T. Guimares, S. Taba, Z.F. Hao, B.S. Gao, J.H. Chen, J. Li, J.S. Zhang, B.S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S.N. Parentoni, T. Shah, T.Z. Rong, J.H. Crouch, Y.B. Xu, Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms, Theor. Appl. Genet. 120 (2009) 93–115.

[71]

J.B. Yan, X.H. Yang, T. Shah, H. Sánchez-Villeda, J.S. Li, M. Warburton, Y. Zhou, J.H. Crouch, Y.B. Xu, High-throughput SNP genotyping with the GoldenGate assay in maize, Mol. Breed. 25 (2010) 441–451.

[72]

W.W. Wen, S. Taba, T. Shah, T.V.H. Chavez, J.B. Yan, Detection of genetic integrity of conserved maize (Zea mays L.) germplasm in genebanks using SNP markers, Genet. Resour. Crop. Evol. 58 (2011) 189–207.

[73]

D.L. Hyten, I.Y. Choi, Q.J. Song, R.C. Shoemaker, R.L. Nelson, J.M. Costa, J.E. Specht, P.B. Cregan, Highly variable patterns of linkage disequilibrium in multiple soybean populations, Genetics 175 (2007) 1937–1944.

[74]

J.M. Yu, Z.W. Zhang, C.S. Zhu, D.A. Tabanao, G. Pressoir, M.R. Tuinstra, S. Kresovich, R.J. Todhunter, E.S. Buckler, Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping, Plant Genome 2 (2009) 63–77.

[75]

D. Van Inghelandt, A. Melchinger, C. Lebreton, B. Stich, Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers, Theor. Appl. Genet. 120 (2010) 1289–1299.

[76]

Y.L. Zhu, S.X. Wang, H.P. Zhang, L.X. Zhao, Z.Y. Wu, H. Jiang, J.J. Cao, K. Liu, M. Qin, J. Lu, G.L. Sun, X.C. Xia, C. Chang, C.X. Ma, Identification of major loci for seed dormancy at different post-ripening stages after harvest and validation of a novel locus on chromosome 2AL in common wheat, Mol. Breed. 36 (2016) 174.

[77]

T. Yanagisawa, C. Kiribuchi-Otobe, H. Hirano, Y. Suzuki, M. Fujita, Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker, Theor. Appl. Genet. 107 (2003) 84–88.

[78]

Y.Y. Zhang, Z.Y. Fang, Q.B. Qang, Y.M. Liu, L.M. Yang, M. Zhuang, P.T. Sun, Chloroplast subspecies-specific SNP detection and its maternal inheritance in Brassica oleracea L. by using a dCAPS marker, J. Hered. 103 (2012) 606–611.

[79]

H. Di, X.J. Liu, Q.K. Wang, J.F. Weng, L. Zhang, X.H. Li, Z.H. Wang, Development of SNP-based dCAPS markers linked to major head smut resistance quantitative trait locus qHS2.09 in maize, Euphytica 202 (2015) 69–79.

[80]

F.S. Song, J.L. Ni, Y.L. Qian, L. Li, D.H. Ni, J.B. Yang, Development of SNP-based dCAPS markers for identifying male sterile gene tms5 in two-line hybrid rice, Genet. Mol. Res. 15 (2016) (gmr.15038512).

[81]

G.A. Lee, H.J. Koh, H.K. Chung, A. Dixit, J.W. Chung, K.H. Ma, S.Y. Lee, J.R. Lee, G.S. Lee, J.G. Gwag, T.S. Kim, Y.J. Park, Development of SNP-based CAPS and dCAPS markers in eight different genes involved in starch biosynthesis in rice, Mol. Breed. 24 (2009) 93–101.

[82]

A. Bungartz, M. Klaus, B. Mathew, J. Léon, A.A. Naz, Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley, Genomics 107 (2016) 100–107.

[83]

E.C. Brummer, G.L. Graef, J. Orf, J.R. Wilcox, R.C. Shoemaker, Mapping QTL for seed protein and oil content in eight soybean populations, Crop Sci. 37 (1997) 370–378.

[84]

T.M. Fulton, T. Beck-Bunn, D. Emmatty, Y. Eshed, J. Lopez, V. Petiard, J. Uhlig, D. Zamir, S.D. Tanksley, QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTL found in other wild species, Theor. Appl. Genet. 95 (1997) 881–894.

[85]

N. Li, Y.H. Li, Maternal control of seed size in plants, J. Exp. Bot. 66 (2015) 1087–1097.

[86]

V.M. Davis, K.D. Gibson, T.T. Bauman, S.C. Weller, W.G. Johnson, Influence of weed management practices and crop rotation on glyphosate-resistant horse weed (Conyza canadensis) population dynamics and crop yield years Ⅲ and Ⅳ, Weed Sci. 57 (2009) 417–426.

[87]

F. Huang, Y.J. Chi, J.Y. Gai, D.Y. Yu, Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein, Gene 438 (2009) 40–48.

[88]

B.H. Liu, T. Fujita, Z.H. Yan, S. Sakamoto, D.H. Xu, J. Abe, QTL mapping of domestication-related traits in soybean (Glycine max), Ann. Bot. 100 (2007) 1027–1038.

[89]

Z.X. Tian, X.B. Wang, R. Lee, Y.H. Li, J.E. Spechtd, R.L. Nelsone, P.E. McCleanc, L.J. Qiu, J.X. Ma, Artificial selection for determinate growth habit in soybean, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 8563–8568.

[90]

Z.B. Hu, H.R. Zhang, G.Z. Kan, D.Y. Ma, D. Zhang, G.X. Shi, D.L. Hong, G.Z. Zhang, D.Y. Yu, Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.), Genetica 141 (2013) 247–254.

[91]

F.T. Xie, Y. Niu, J. Zhang, S.H. Bu, H.Z. Zhang, Q.C. Geng, J.Y. Feng, Y.M. Zhang, Fine mapping of quantitative trait loci for seed size traits in soybean, Mol. Breed. 34 (2014) 2165–2178.

[92]

S. Manan, M.Z. Ahmad, G.Y. Zhang, B.B. Chen, B.U. Haq, J.H. Yang, J. Zhao, Soybean LEC2 regulates subsets of genes involved in controlling the biosynthesis and catabolism of seed storage substances and seed development, Front. Plant Sci. 8 (2017) 1604.

[93]

X.Z. Feng, B.H. Liu, S.X. Yang, Progress and perspective of soybean molecular design breeding research, Soil Crop 3 (2014) 123–131 (in Chinese with English abstract).

[94]

Y. Ma, X.Y. Dai, Y.Y. Xu, W. Luo, X.M. Zheng, D.L. Zeng, Y.J. Pan, X.L. Lin, H.H. Liu, D.J. Zhang, J. Xiao, X.Y. Guo, S.J. Xu, Y.D. Niu, J.B. Jin, H. Zhang, X. Xu, L.G. Li, W. Wang, Q. Qian, S. Ge, K. Chong, COLD1 confers chilling tolerance in rice, Cell 160 (2015) 1209–1221.

[95]

B. Hu, W. Wang, S.J. Ou, J.Y. Tang, H. Li, R.H. Che, Z.H. Zhang, X.Y. Chai, H.R. Wang, Y.Q. Wang, C.Z. Liang, L.C. Liu, Z.Z. Piao, Q.Y. Deng, K. Deng, C. Xu, Y. Liang, L.H. Zhang, L.G. Li, C.C. Chu, Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies, Nat. Genet. 47 (2015) 834–838.

[96]

S.K. Wang, S. Li, Q. Liu, K. Wu, J.Q. Zhang, S.S. Wang, Y. Wang, X.B. Chen, Y. Zhang, C.X. Gao, F. Wang, H.X. Huang, X.D. Fu, The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality, Nat. Genet. 47 (2015) 949–954.

[97]

L.Z. Si, J.Y. Chen, X.H. Huang, H. Gong, J.H. Luo, Q.Q. Hou, T.Y. Zhou, T.T. Lu, J.J. Zhu, Y.Y. Shanguan, E.W. Chen, C.X. Gong, Q. Zhao, Y.F. Jing, Y. Zhao, Y. Li, L.L. Cui, D.L. Fan, Y.Q. Lu, Q.J. Weng, Y.C. Wang, Q.L. Zhan, K.Y. Liu, X.H. Wei, K. An, G. An, B. Han, OsSPL13 controls grain size in cultivated rice, Nat. Genet. 48 (2016) 447–456.

The Crop Journal
Pages 548-559
Cite this article:
Li J, Zhao J, Li Y, et al. Identification of a novel seed size associated locus SW9-1 in soybean. The Crop Journal, 2019, 7(4): 548-559. https://doi.org/10.1016/j.cj.2018.12.010

244

Views

1

Downloads

21

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 16 August 2018
Revised: 03 December 2018
Accepted: 12 January 2019
Published: 30 January 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return