AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Identification of SNP and InDel variations in the promoter and 5′ untranslated regions of γ-tocopherol methyl transferase (ZmVTE4) affecting higher accumulation of α-tocopherol in maize kernel

Abhijit Kumar Das1Rashmi ChhabraVignesh MuthusamyHema Singh ChauhanRajkumar Uttamrao ZunjareFiroz Hossain( )
The Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi 110012, India

1 Present address: ICAR-Indian Institute of Maize Research (IIMR), Ludhiana 141004, India.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Deficiency of vitamin-E or tocopherol causes neurological and cardiovascular disorders in humans. Though maize kernel is rich in total tocopherol, the level of α-tocopherol possessing the highest vitamin-E activity is low. Mutant allele of ZmVTE4 with deletion of 7 bp and 118 bp (0/0: most favorable haplotype) in 5′UTR and promoter region, respectively significantly enhances α-tocopherol in maize kernel than wild type haplotype (7/118). α-tocopherol estimation in 15 diverse inbreds revealed that mean α-/γ-tocopherol and α-/total-tocopherol was much higher in genotypes with favorable haplotype (1.51 and 0.41) than unfavorable class (0.19 and 0.13), respectively. However even within favorable class, α-tocopherol ranged from 4.76 to 30.07 μg g−1. Sequence analysis of part of 5′UTR and promoter of ZmVTE4 among the genotypes with favorable haplotype revealed 14 SNPs (SNP1 to SNP14) and eight InDels (InDel1 to InDel8). SNP7 at 606 bp (G to A), and InDels viz., InDel1 (27 bp), InDel4 (27 bp) and InDel8 (14 bp) differentiated low and high α-tocopherol accumulating inbreds with favorable haplotype. Hence the newly identified SNP and InDels in addition to the already reported InDels can be useful in selection of favorable genotypes with higher α-tocopherol in maize.

References

[1]
H. Bouis, Reducing mineral and vitamin deficiencies through biofortification: progress under HarvestPlus, in: H.K. Biesalski, R. Birner (Eds.), Hidden Hunger: Strategies to Improve Nutrition Quality, World Review of Nutrition and Dietetics, 118, Basel, Karger, Switzerland 2018, pp. 112–122.
[2]

Jen Claydon and Jen Claydon, Global Nutrition Report 2017: Nourishing the SDGs, Development Initiatives, Bristol, UK, 2017.

[3]

T. Muzhingi, N. Palacios-Rojas, A. Miranda, M.L. Cabrera, K.J. Yeum, G. Tang, Genetic variation of carotenoids, vitamin E and phenolic compounds in provitamin A biofortified maize, J. Sci. Food Agric. 97 (2017) 793–801.

[4]

Institute of Medicine, Dietary referenceintakes for vitamin C, vitamin E, selenium and carotenoids, National Academy Press, Washington, D.C., USA, 2000.

[5]

P. Bramley, I. Elmadfa, A. Kafatos, F.J.M.Y. Kelly, H.E. Roxborough, W. Schuch, P.J.A. Sheehy, K.H. Wagner, Vitamin E, J. Sci. Food Agric. 80 (2000) 913–938.

[6]

Q. Li, X. Yang, S. Xu, Y. Cai, D. Zhang, Y. Han, L. Li, Z. Zhang, S. Gao, J. Li, J. Yan, Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels, PLoS One 7 (2012) e36807.

[7]

M.S. Andersson, A. Saltzman, P.S. Virk, W.H. Pfeiffer, Progress update: crop development of biofortified staple food crops under HarvestPlus, Afr. J. Food Agric. Nutr. Dev. 17 (2017) 11905–11935.

[8]

B. Shiferaw, B.M. Prasanna, J. Hellin, M. Banziger, Crops that feed the world, 6. Past successes and future challenges to the role played by maize in global food security, Food Secur. 3 (2011) 307–327.

[9]

M.G. Traber, H. Sies, Vitamin E in humans: demand and delivery, Annu. Rev. Nutr. 16 (1996) 321–347.

[10]

C.O. Egesel, J.C. Wong, R.J. Lambert, T.R. Rocheford, Combining ability of maize inbreds for carotenoid and tocopherols, Crop Sci. 43 (2003) 818–823.

[11]

J.C. Wong, R.J. Lambert, Y. Tadmor, T.R. Rocheford, QTL associated with accumulation of tocopherols in maize, Crop Sci. 43 (2003) 2257–2266.

[12]

S. Chander, Y.Q. Guo, X.H. Yang, J.B. Yan, Y.R. Zhang, T.M. Song, J.S. Li, Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach, Mol. Breed. 22 (2008) 353–365.

[13]

S.T. Xu, D.L. Zhang, Y. Cai, Y. Zhou, S. Trushar, A. Farhan, Q. Li, Z.G. Li, W.D. Wang, J.S. Li, X.H. Yang, J.B. Yan, Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers, BMC Plant Biol. 12 (2012) 201.

[14]

A.K. Das, S.K. Jaiswal, V. Muthusamy, R.U. Zunjare, H.S. Chauhan, G. Chand, S. Saha, F. Hossain, Molecular diversity and genetic variability of kernel tocopherols among maize inbreds possessing favourable haplotypes of γ-tocopherol methyl transferase (γ-VTE4), J. Plant Biochem. Biotechnol. (2018)https://doi.org/10.1007/s13562-018-0470-x.

[15]

M.G. Murray, W.F. Thompson, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res. 8 (1980) 4321–4325.

[16]

S. Saha, S. Walia, A. Kundu, N. Pathak, Effect of mobile phase on resolution of the isomers and homologues of tocopherols on a triacontyl stationary phase, Anal. Bioanal. Chem. 405 (2013) 9285–9295.

[17]

P.H.A. Sneath, R.R. Sokal, Numerical Taxonomy: The Principles and Practice of Numerical Classification, Freeman, San Francisco, CA, USA, 1973.

[18]

M. Nei, S. Kumar, Molecular Evolution and Phylogenetics, Oxford University Press, New York, NY, USA (2000).

[19]

A.E. Lipka, M.A. Gore, M. Magallanes-Lundback, A. Mesberg, H. Lin, T. Tiede, D. DellaPenna, Genome-wide association study and pathway level analysis of tocochromanol levels in maize grain, G3 Genes Genomes Genet. 3 (2013) 1287–1299.

[20]

D. DellaPenna, B.J. Pogson, Vitamin synthesis in plants: tocopherols and carotenoids, Annu. Rev. Plant Biol. 57 (2006) 711–738.

[21]

A.D.A. Ching, K.S. Caldwell, M. Jung, M. Dolan, O. Smith, S. Tingey, A.J. Rafalski, SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines, BMC Genet. 3 (2002) 19.

[22]

D. Bhattramakki, M. Dolan, M. Hanafey, R. Wineland, D. Vaske, J.C. Register, S.V. Tingey, A. Rafalski, Insertion-deletion polymorphisms in 3′ regions of maize genes occur frequently and can be used as highly informative genetic markers, Plant Mol. Biol. 48 (2002) 539–547.

[23]

J. Yan, B.C. Kandianis, E.C. Harjes, L. Bai, H.E. Kim, X. Yang, D.J. Skinner, Z. Fu, S. Mitchell, Q. Li, G.S.M. Fernandez, M. Zaharoeva, R. Babu, Y. Fu, N. Palacios, J. Li, D. DellaPenna, T. Brutnell, S.E. Buckler, L.M. Warburton, T. Rocheford, Rare genetic variation at Zea mays crtRB1 increases beta carotene in maize grain, Nat. Genet. 42 (2010) 322–327.

[24]

C.E. Harjes, T.R. Rocheford, L. Bai, T.P. Brutnell, C.B. Kandianis, S.G. Sowinski, A.E. Stapleton, R. Vallabhaneni, M. Williams, E.T. Wurtzel, J. Yan, E.S. Buckler, Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification, Science 319 (2008) 330–333.

[25]

M. Vignesh, T. Nepolean, F. Hossain, A.K. Singh, H.S. Gupta, Sequence variation in 3′UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel, J. Plant Biochem. Biotechnol. 22 (2013) 401–408.

[26]
R.U. Zunjare, R. Chhabra, F. Hossain, A. Baveja, V. Muthusamy, H.S. Gupta, Molecular characterization of 5′UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification, 3Biotech 8 (2018) 75.
[27]

P. Lestari, G. Lee, T.H. Ham, M.O. Woo, R. Piao, W. Jiang, S.H. Chu, J. Lee, H.J. Koh, Single nucleotide polymorphisms and haplotype diversity in rice sucrose synthase 3, J. Hered. 102 (2011) 735–746.

[28]

A.T. Pham, J.D. Lee, J.G. Shannon, K.D. Bilyeu, A novel FAD2–1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content, Theor. Appl. Genet. 123 (2011) 793–802.

[29]

A. Singh, P.K. Singh, R. Singh, A. Pandit, A.K. Mahato, D.K. Gupta, K. Tyagi, A.K. Singh, N.K. Singh, T.R. Sharma, SNP haplotypes of the BADH1 gene and their association with aroma in rice (Oryza sativa L.), Mol. Breed. 26 (2010) 325–338.

[30]

R. Jackson, U.T. Christopher, T.V.P. Hellen, The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol. 11 (2010) 113–127.

[31]

B. Mazumder, V. Seshadri, P.L. Fox, Translational control by the 3′-UTR: the ends specify the means, Trends Biochem. Sci. 28 (2003) 91–98.

[32]

Y. Kim, G. Lee, E. Jeon, E.J. Sohn, Y. Lee, H. Kang, I. Hwang, The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana, Nucleic Acids Res. 42 (2013) 485–498.

[33]

S. Fritsche, X. Wang, J. Li, B. Stich, F.J. Kopisch-Obuch, J. Endrigkeit, G. Leckband, F. Dreyer, W. Friedt, J. Meng, C. Jung, A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus), Front. Plant Sci. 3 (2012) 129.

[34]
E.J. Shaw, Genetic basis of tocopherol accumulation in soybean (Glycine max [L.] Merr.) seeds, Ph.D. Dissertation, The University of Guelph, Guelph, Ontario, Canada, 2012.
[35]

B. Kloeckener-Gruissem, J.M. Vogel, M. Freeling, The TATA box promoter region of maize Adh1 affects its organ-specific expression, EMBO J. 11 (1992) 157–166.

[36]

M.L. Grace, M.B. Chandrasekharan, T.C. Hall, A.J. Crowe, Sequence and spacing of TATA box elements are critical for accurate initiation from the β-phaseolin promoter, J. Biol. Chem. 279 (2004) 8102–8110.

[37]

K. Kiran, S.A. Ansari, R. Srivastava, N. Lodhi, C.P. Chaturvedi, S.V. Sawant, R. Tuli, The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants, Plant Physiol. 142 (2006) 364–376.

[38]

T.I. Lee, R.A. Young, Transcriptional regulation and its misregulation in disease, Cell 152 (2013) 1237–1251.

[39]

M. Ohta, K. Matsui, K. Hiratsu, H. Shinshi, H.M. Ohme-Takagi, Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression, Plant Cell 13 (2001) 1959–1968.

[40]

S.Y. Fujimoto, M. Ohta, A. Usui, H. Shinshi, M. Ohme-Takagi, Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression, Plant Cell 12 (2000) 393–404.

[41]

B.C.Y. Collard, M.Z.Z. Jahufer, J.B. Brouwer, E.C.K. Pang, An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts, Euphytica 142 (2005) 169–196.

[42]

L. Udoh, M. Gedil, E.Y. Parkes, P. Kulakow, A. Adesoye, C. Nwuba, I.Y. Rabbi, Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz), Mol. Breed. 37 (2017) 123.

[43]

N. Saini, N. Singh, A. Kumar, Development and validation of functional CAPS markers for the FAE genes in Brassica juncea and their use in marker-assisted selection, Breed. Sci. 66 (2016) 831–837.

[44]

A. Rafalski, Applications of single nucleotide polymorphisms in crop genetics, Curr. Opin. Plant Biol. 5 (2002) 94–100.

[45]

A. Belo, P. Zheng, S. Luck, B. Shen, D.J. Meyer, B. Li, S. Tingey, A. Rafalski, Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize, Mol. Gen. Genomics. 279 (2008) 1–10.

The Crop Journal
Pages 469-479
Cite this article:
Das AK, Chhabra R, Muthusamy V, et al. Identification of SNP and InDel variations in the promoter and 5′ untranslated regions of γ-tocopherol methyl transferase (ZmVTE4) affecting higher accumulation of α-tocopherol in maize kernel. The Crop Journal, 2019, 7(4): 469-479. https://doi.org/10.1016/j.cj.2019.01.004

239

Views

5

Downloads

6

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 03 September 2018
Revised: 04 January 2019
Accepted: 10 January 2019
Published: 08 April 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return