AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fine mapping of qTGW10-20.8, a QTL having important contribution to grain weight variation in rice

Yujun Zhua,bZhenhua ZhangaJunyu ChenaYeyang FanaTongmin MoubShaoqing Tanga( )Jieyun Zhuanga( )
State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
State Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Grain weight is one of the most important determinants of grain yield in rice. In this study, QTL analysis for grain weight, grain length, and grain width was performed using populations derived from crosses between major parental lines of three-line indica hybrid rice. A total of 27 QTL for grain weight were detected using three recombinant inbred line populations derived from the crosses Teqing/IRBB lines, Zhenshan 97/Milyang 46, and Xieqingzao/Milyang 46. Of these, 10 were found in only a single population and the other 17 in two or all three populations. Nine of the 17 common QTL were located in regions where no QTL associated with grain weight have been cloned and one was selected for fine-mapping. Eight populations segregating in an isogenic background were derived from one F7 residual heterozygote of Teqing/IRBB52. The target QTL, qTGW10-20.8 controlling grain weight, grain length, and grain width, was localized to a 70.7-kb region flanked by InDel markers Te20811 and Te20882 on the long arm of chromosome 10. The QTL region contains seven annotated genes, of which six encode proteins with known functional domains and one encodes a hypothetical protein. One of the genes, Os10g0536100 encoding the MIKC-type MADS-box protein OsMADS56, is the most likely candidate for qTGW10-20.8. These results provide a basis for cloning qTGW10-20.8, which has an important contribution to grain weight variation in rice.

References

[1]

J. Yu, H. Xiong, X. Zhu, H. Zhang, H. Li, J. Miao, W. Wang, Z. Tang, Z. Zhang, G. Yao, Q. Zhang, Y. Pan, X. Wang, M.A.R. Rashid, J. Li, Y. Gao, Z. Li, W. Yang, X. Fu, Z. Li, OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap, BMC Biol. 15 (2017) 28.

[2]

J. Yu, J. Miao, Z. Zhang, H. Xiong, X. Zhu, X. Sun, Y. Pan, Y. Liang, Q. Zhang, R.M.A. Rehman, J. Li, H. Zhang, Z. Li, Alternative splicing of OsLG3b controls grain length and yield in japonica rice, Plant Biotechnol. J. 16 (2018) 1667–1678.

[3]

Q. Liu, R. Han, K. Wu, J. Zhang, Y. Ye, S. Wang, J. Chen, Y. Pan, Q. Li, X. Xu, J. Zhou, D. Tao, Y. Wu, X. Fu, G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice, Nat. Commun. 9 (2018) 852.

[4]

C. Fan, Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, Q. Zhang, GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein, Theor. Appl. Genet. 112 (2006) 1164–1171.

[5]

P. Qi, Y.S. Lin, X.J. Song, J.B. Shen, W. Huang, J.X. Shan, M.Z. Zhu, L. Jiang, J.P. Gao, H.X. Lin, The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1:3, Cell Res. 22 (2012) 1666–1680.

[6]

X. Zhang, J. Wang, J. Huang, H. Lan, C. Wang, C. Yin, Y. Wu, H. Tang, Q. Qian, J. Li, H. Zhang, Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 21534–21539.

[7]

Z. Hu, S.J. Lu, M.J. Wang, H. He, L. Sun, H. Wang, X.H. Liu, L. Jiang, J.L. Sun, X. Xin, W. Kong, C. Chu, H.W. Xue, J. Yang, X. Luo, J.X. Liu, A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice, Mol. Plant 11 (2018) 736–749.

[8]

X.J. Song, W. Huang, M. Shi, M.Z. Zhu, H.X. Lin, A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase, Nat. Genet. 39 (2007) 623–630.

[9]

J. Hu, Y. Wang, Y. Fang, L. Zeng, J. Xu, H. Yu, Z. Shi, J. Pan, D. Zhang, S. Kang, L. Zhu, G. Dong, L. Guo, D. Zeng, G. Zhang, L. Xie, G. Xiong, J. Li, Q. Qian, A rare allele of GS2 enhances grain size and grain yield in rice, Mol. Plant 8 (2015) 1455–1465.

[10]

R. Che, H. Tong, B. Shi, Y. Liu, S. Fang, D. Liu, Y. Xiao, B. Hu, L. Liu, H. Wang, M. Zhao, C. Chu, Control of grain size and rice yield by GL2-mediated brassinosteroid responses, Nat. Plants 2 (2016), 15195.

[11]

Y. Li, C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao, Y. He, Q. Zhang, Natural variation in GS5 plays an important role in regulating grain size and yield in rice, Nat. Genet. 43 (2011) 1266–1269.

[12]

P. Duan, J. Xu, D. Zeng, B. Zhang, M. Geng, G. Zhang, K. Huang, L. Huang, R. Xu, S. Ge, Q. Qian, Y. Li, Natural variation in the promoter of GSE5 contributes to grain size diversity in rice, Mol. Plant 10 (2017) 685–694.

[13]

K. Ishimaru, N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B.I. Shimizu, A. Onish, H. Miyagawa, E. Katoh, Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increase yield, Nat. Genet. 45 (2013) 707–713.

[14]

X.J. Song, T. Kuroha, M. Ayano, T. Furuta, K. Nagai, N. Komeda, S. Segami, K. Miura, D. Ogawa, T. kamura, T. Suzuki, T. Higashiyama, M. Yamasaki, H. Mori, Y. Inukai, J. Wu, H. Kitano, H. Sakakibara, S.E. Jacobsen, M. Ashikari, Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 76–81.

[15]

L. Si, J. Chen, X. Huang, H. Gong, J. Luo, Q. Hou, T. Zhou, T. Lu, J. Zhu, Y. Shangguan, E. Chen, C. Gong, Q. Zhao, Y. Jing, Y. Zhao, Y. Li, L. Cui, D. Fan, Y. Lu, Q. Weng, Y. Wang, Q. Zhan, K. Liu, X. Wei, K. An, G. An, B. Han, OsSPL13 controls grain size in cultivated rice, Nat. Genet. 48 (2016) 447–456.

[16]

Y. Wang, G. Xiong, J. Hu, L. Jiang, H. Yu, J. Xu, Y. Fang, L. Zeng, E. Xu, J. Xu, W. Ye, X. Meng, R. Liu, H. Chen, Y. Jing, Y. Wang, X. Zhu, J. Li, Q. Qian, Copy number variation at the GL7 locus contributes to grain size diversity in rice, Nat. Genet. 47 (2015) 944–949.

[17]

S. Wang, S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao, F. Wang, H. Huang, X. Fu, The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality, Nat. Genet. 47 (2015) 949–954.

[18]

W. Wu, X. Liu, M. Wang, R.S. Meyer, X. Luo, M.N. Ndjiondjop, L. Tan, J. Zhang, J. Wu, H. Cai, C. Sun, X. Wang, R.A. Wing, Z. Zhu, A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication, Nat. Plants 3 (2017), 17064.

[19]

S. Wang, K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian, G. Zhang, X. Fu, Control of grain size, shape and quality by OsSPL16 in rice, Nat. Genet. 44 (2012) 950–955.

[20]

D.S. Zhao, Q.F. Li, C.Q. Zhang, C. Zhang, Q.Q. Yang, L.X. Pan, X.Y. Ren, J. Lu, M.H. Gu, Q.Q. Liu, GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality, Nat. Commun. 9 (2018) 1240.

[21]

C.J. Yan, S. Yan, Y.C. Yang, X.H. Zeng, Y.W. Fang, S.Y. Zeng, C.Y. Tian, Y.W. Sun, S.Z. Tang, M.H. Gu, Development of gene-tagged markers for quantitative trait loci underlying rice yield components, Euphytica 169 (2009) 215–226.

[22]

C. Wang, S. Chen, S. Yu, Functional markers developed from multiple loci in GS3 for fine markers-assisted selection of grain length in rice, Theor. Appl. Genet. 122 (2011) 905–913.

[23]

N. Takano-Kai, H. Jiang, T. Kubo, M. Sweeney, T. Matsumoto, H. Kanamori, B. Padukasahasram, C. Bustamante, A. Yoshimura, K. Doi, S. McCouch, Evolutionary history of GS3, a gene conferring grain length in rice, Genetics 182 (2009) 1323–1334.

[24]

H. Mao, S. Sun, J. Yao, C. Wang, S. Yu, C. Xu, X. Li, Q. Zhang, Linking differential domain functions of the GS3 protein to natural variation of grain size in rice, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 19579–19584.

[25]

Y. Wang, Q. Cai, H. Xie, F. Wu, L. Lian, W. He, L. Chen, H. Xie, J. Zhang, Determination of heterotic groups and heterosis analysis of yield performance in indica rice, Rice Sci. 25 (2018) 261–269.

[26]

X. Luo, Y. Fu, P. Zhang, S. Wu, F. Tian, J. Liu, Z. Zhu, J. Yang, C. Sun, Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice, J. Integr. Plant Biol. 51 (2009) 393–408.

[27]

D. Mei, Y. Zhu, Y. Yu, Y. Fan, D. Huang, J. Zhuang, Quantitative trait loci for grain chalkiness and endosperm transparency detected in three recombinant inbred line population of indica rice, J. Integr. Agric. 12 (2013) 1–11.

[28]

Y. Zhu, D. Huang, Y. Fan, Z. Zhang, J. Ying, J. Zhuang, Detection of QTLs for yield heterosis in rice using a RIL population and its testcross population, Int. J. Genomics 2016 (2016), 2587823.

[29]

Z.X. Sun, Z.G. E, L. Wang, D.F. Zhu, Y.P. Zhang, G.C. Hu, W.Z. Liu, Y.P. Fu, Exploring assessment method of Chinese rice backbone parents, Acta Agron. Sin. 40 (2014) 973–983 (in Chinese with English abstract).

[30]

Z. Sun, Y. Zhu, J. Chen, H. Zhang, Z. Zhang, X. Niu, Y. Fan, J. Zhuang, Minor-effect QTL for heading date detected in crosses between indica rice cultivar Teqing and near isogenic lines of IR24, Crop J. 6 (2018) 291–298.

[31]

J. Zhuang, Y. Fan, Z. Rao, J. Wu, Y. Xia, K. Zheng, Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice, Theor. Appl. Genet. 105 (2002) 1137–1145.

[32]

N. Huang, E.R. Angeles, J. Domingo, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett, G.S. Khush, Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR, Theor. Appl. Genet. 95 (1997) 313–320.

[33]

H. Zhang, Y. Fan, Y. Zhu, J. Chen, S. Yu, J. Zhuang, Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice, BMC Genet. 17 (2016) 98.

[34]
K. Zheng, N. Huang, J. Bennett, G.S. Khush, PCR-based marker-assisted selection in rice breeding, IRRI Discussion Paper Series No.12, International Rice Research Institute, Los Banos, Philippines, 1995.
[35]

X. Chen, S. Temnykh, Y. Xu, Y.G. Cho, S.R. McCouch, Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.), Theor. Appl. Genet. 95 (1997) 553–567.

[36]

S. Li, J. Wang, L. Zhang, Inclusive composite interval mapping of QTL by environment interactions in bi-parental populations, PLoS One 10 (2015), e0132414.

[37]

L. Meng, H. Li, L. Zhang, J. Wang, QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations, Crop J. 3 (2015) 269–283.

[38]

S.R. McCouch, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative), Gene nomenclature system for rice, Rice 1 (2008) 72–84.

[39]
SAS Institute Inc, SAS/STAT User's Guide, Cary, North Carolina, USA, 1999.
[40]

W. Dai, K. Zhang, J. Wu, L. Wang, B. Duan, K. Zheng, R. Cai, J. Zhuang, Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice, Euphytica 160 (2008) 317–324.

[41]

Q. Dong, Z. Zhang, L. Wang, Y. Zhu, Y. Fan, T. Mou, L. Ma, J. Zhuang, Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice, Rice 11 (2018) 44.

[42]

Y. Zhu, Y. Fan, K. Wang, D. Huang, W. Liu, J. Ying, J. Zhuang, Rice flowering locus T 1 plays an important role in heading date influencing yield traits in rice, Sci. Rep. 7 (2017) 4918.

[43]

Z. Zhang, K. Wang, L. Guo, Y. Zhu, Y. Fan, S. Cheng, J. Zhuang, Pleiotropism of the photoperiod-insensitive allele of Hd1 on heading date, plant height and yield traits in rice, PLoS One 7 (2012) e52538.

[44]

Z. Wang, J. Chen, Y. Zhu, Y. Fan, J. Zhuang, Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.), J. Integr. Agric. 16 (2017) 16–26.

[45]

J.T. Mindrebo, C.M. Nartey, Y. Seto, M.D. Burkart, J.P. Noel, Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom, Curr. Opin. Struct. Biol. 41 (2016) 233–246.

[46]

H.T. Cho, D.J. Cosgrove, Regulation of root hair initiation and expansin gene expression in Arabidopsis, Plant Cell 14 (2002) 3237–3253.

[47]

N. Nigam, A. Singh, C. Sahi, A. Chandramouli, A. Grover, SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response, Mol. Gen. Genomics. 279 (2008) 371–383.

[48]

Z. E, Y. Zhang, T. Li, L. Wang, H. Zhao, Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments, PLoS One 10 (2015), e0122621.

[49]

C.H. Ryu, S. Lee, L.H. Cho, S.L. Kim, Y.S. Lee, S.C. Choi, H.J. Jeong, J. Yi, S.J. Park, C.D. Han, G. An, OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice, Plant Cell Environ. 32 (2009) 1412–1427.

[50]

N. Li, R. Xu, P. Duan, Y. Li, Control of grain size in rice, Plant Reprod. 31 (2018) 237–251.

[51]

N. Kinoshita, S. Takano, N. Shimoda, I. Takamure, T. Sato, K. Kato, Development of genome-wide PCR-based markers from insertion, deletion and single nucleotide polymorphisms for closely related Japanese rice cultivars and identification of QTLs for the appearance of cooked rice and polished rice, Breed. Sci. 66 (2016) 742–751.

[52]

J. Chen, H. Zhang, H. Zhang, J. Ying, L. Ma, J. Zhuang, Natural variation at qHd1 affects heading date acceleration at high temperatures with pleiotropism for yield traits in rice, BMC Plant Biol. 18 (2018) 112.

The Crop Journal
Pages 587-597
Cite this article:
Zhu Y, Zhang Z, Chen J, et al. Fine mapping of qTGW10-20.8, a QTL having important contribution to grain weight variation in rice. The Crop Journal, 2019, 7(5): 587-597. https://doi.org/10.1016/j.cj.2019.01.006

212

Views

1

Downloads

16

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 08 November 2018
Revised: 20 December 2018
Accepted: 11 March 2019
Published: 08 April 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return