AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1,016.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Characterization of a new hexaploid triticale 6D(6A) substitution line with increased grain weight and decreased spikelet number

Zhiyu FengaZhongqi QiaDejie DuaMingyi ZhangbAiju ZhaocZhaorong HuaMingming XinaYingyin YaoaHuiru PengaQixin SunaZhongfu Nia( )
Key Laboratory of Crop Heterosis and Utilization, State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi, China
Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Hexaploid triticale (×Triticosecale, AABBRR) is an important forage crop and a promising energy plant. Transferring D-genome chromosomes or segments from common wheat (Triticum aestivum) into hexaploid triticale is attractive in improving its economically important traits. Here, a hexaploid triticale 6D(6A) substitution line Lin 456 derived from the cross between the octoploid triticale line H400 and the hexaploid wheat Lin 56 was identified and analyzed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and molecular markers. The GISH analysis showed that Lin 456 is a hexaploid triticale with 14 rye (Secale cereale) chromosomes and 28 wheat chromosomes, whereas non-denaturing fluorescence in situ hybridization (ND-FISH) and molecular marker analysis revealed that it is a 6D(6A) substitution line. In contrast to previous studies, the signal of Oligo-pSc119.2 was observed at the distal end of 6DL in Lin 456. The wheat chromosome 6D was associated with increased grain weight and decreased spikelet number using the genotypic data combined with the phenotypes of the F2 population in the three environments. The thousand-grain weight and grain width in the substitution individuals were significantly higher than those in the non-substitution individuals in the F2 population across the three environments. We propose that the hexaploid triticale 6D(6A) substitution line Lin 456 can be a valuable and promising donor stock for genetic improvement during triticale breeding.

References

[1]
M. Mergoum, P.K. Singh, R.J. Peña, A.J. Lozano-del Río, K.V. Cooper, D.F. Salmon, H. Gómez Macpherson, Triticale: A “new” crop with old challenges, in: M.J. Carena (Ed.), Cereals, Springer, New York, NY, USA 2009, pp. 267–287.
[2]

A.S. Wilson, On wheat and rye hybrids, Transact. Bot. Soc. Edinburgh 12 (1873) 286–288.

[3]

K. Hammer, A.A. Filatenko, K. Pistrick, Taxonomic remarks on Triticum L, and ×Triticosecale Wittm, Genet. Resour. Crop Evol. 58 (2011) 3–10.

[4]

S. Bernard, M. Bernard, Creating new forms of 4x, 6x and 8x primary triticale associating both complete R and D genomes, Theor. Appl. Genet. 74 (1987) 55–59.

[5]

H. Kang, H. Wang, J. Huang, Y. Wang, D. Li, C. Diao, W. Zhu, Y. Tang, Y. Wang, X. Fan, J. Zeng, L. Xu, L. Sha, H. Zhang, Y. Zhou, Divergent development of hexaploid triticale by a wheat-rye-Psathyrostachys huashanica trigeneric hybrid method, PLoS One 11 (2016), e0155667.

[6]

J. Li, X.G. Zhu, H.S. Wan, Q. Wang, Z.X. Tang, S.L. Fu, Z. Yang, M.Y. Yang, W.Y. Yang, Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines, Hereditas (Beijing) 37 (2015) 590–598.

[7]

H. Kang, Y. Wang, C. Diao, D. Li, Y. Wang, J. Zeng, X. Fan, L. Xu, L. Sha, H. Zhang, Y. Zheng, Y. Zhou, A hexaploid triticale 4D(4B) substitution line confers superior stripe rust resistance, Mol. Breed. 37 (2017) 36.

[8]

U. Hohmann, K.D. Krolow, Introduction of D-genome chromosomes from Aegilops squarrosa L. into tetraploid triticale (AB)(AB)RR (2n = 28), Theor. Appl. Genet. 82 (1991) 777–783.

[9]

P.N. Fox, B. Skovmand, B.K. Thompson, H.J. Braun, R. Cormier, Yield and adaptation of hexaploid spring triticale, Euphytica 47 (1990) 57–64.

[10]

Z.J. Cheng, M. Murata, Loss of chromosomes 2R and 5RS in octoploid triticale selected for agronomic traits, Genes Genet. Syst. 77 (2002) 23–29.

[11]

A. Niedziela, P.T. Bednarek, M. Labudda, D.R. Mańkowski, A. Anioł, Genetic mapping of a 7R Al tolerance QTL in triticale (x Triticosecale Wittmack), J. Appl. Genet. 55 (2014) 1–14.

[12]

E. Villegas, C.E. Mcdonald, K.A. Gilles, Variability in the lysine content of wheat, rye, and triticale proteins, Cereal Chem. 47 (1970) 746–757.

[13]
A.J. Lukaszewski, J.P. Gustafson, Cytogenetics of Triticale, in: J. Janick, J.W. Dudley, E.J. Ryder (Eds.),Plant Breeding Reviews, Vol. 5, Van Nostrand Reinhold Company, New York, USA 1987, pp. 41–93.
[14]

M. Reynolds, F. Dreccer, R. Trethowan, Drought-adaptive traits derived from wheat wild relatives and landraces, J. Exp. Bot. 58 (2007) 177–186.

[15]

L. Yan, F. Liang, H. Xu, X. Zhang, H. Zhai, Q. Sun, Z. Ni, Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes, Front. Plant Sci. 8 (2017) 1705.

[16]

M.S. Röder, X.Q. Huang, A. Börner, Fine mapping of the region on wheat chromosome 7D controlling grain weight, Funct. Integr. Genomics 8 (2008) 79–86.

[17]

Y. Okamoto, A.T. Nguyen, M. Yoshioka, J.C. Iehisa, S. Takumi, Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines, Breed. Sci. 63 (2013) 423–429.

[18]

A. Rasheed, X. Xia, F. Ogbonnaya, T. Mahmood, Z. Zhang, A. Mujeeb-Kazi, Z. He, Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis, BMC Plant Biol. 14 (2014) 128.

[19]

B.P. Salmanowicz, M. Langner, H. Wisniewska, B. Apolinarska, M. Kwiatek, L. Blaszczyk, Molecular, physicochemical and rheological characteristics of introgressive Triticale/Triticum monococcum ssp. monococcum lines with wheat 1D/1A chromosome substitution, Int. J. Mol. Sci. 14 (2013) 15595–15614.

[20]

W. Sodkiewicz, B. Apolinarska, T. Sodkiewicz, H. Wiśniewska, Effect of chromosomes of the wheat D genome on traits of hexaploid substitution triticale, Cereal Res. Commun. 39 (2011) 445–452.

[21]

K. Rybka, An approach to identification of rye chromosomes affecting the pre-harvest sprouting in triticale, J. Appl. Genet. 44 (2003) 491–496.

[22]

M. Rahmatov, M.N. Rouse, B.J. Steffenson, S.C. Andersson, R. Wanyera, Z.A. Pretorius, A. Houben, N. Kumarse, S. Bhavani, E. Johansson, Sources of stem rust resistance in wheat-alien introgression lines, Plant Dis. 100 (2016) 1101–1109.

[23]

F.J. Zillinsky, The influences of chromosome substitutions on some agronomic characteristics of hexaploid triticales, Hodowla Roślin, Aklimatyzacja i Nasiennictwo 24 (1980) 383–388.

[24]

A.J. Lukaszewski, J.P. Gustafson, Translocations and modifications of chromosomes in triticale × wheat hybrids, Theor. Appl. Genet. 64 (1983) 239–248.

[25]

G. Varughese, E.E. Sari, D.S. Abdalla, Two decades of triticale breeding and research at CIMMYT, Proceedings of International Triticale Symposium, Sydney, Australia 1986 (1986) 148–169.

[26]
G. Budzianowski, W. Mackowiak, K. Paizert, B. Apolinarska, Tolerance to aluminium in spring triticales, in: H. Guedes-PintoNorman, D. Valdemar, . Carnide (Eds), Triticale: Today and Tomorrow, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1996, pp. 467–474.
[27]
M. Mergoum, W.H. Pfeiffer, R.J. Peña, K. Ammar, S. Rajaram, in: M. Mergoum, H. Gómez-Macpherson (Eds.), Triticale Crop Improvement: The CIMMYT Programme, Food and Agriculture Organization of the United Nations, Rome, Italy 2004, pp. 11–27 , Triticale Improvement and Production.
[28]

M. Majka, M. Kwiatek, J. Belter, H. Wisniewska, Characterization of morphology and resistance to Blumeria graminis of winter triticale monosomic addition lines with chromosome 2D of Aegilops tauschii, Plant Cell Rep. 35 (2016) 2125–2135.

[29]

A. Lukaszewski, J. Gustafson, The effect of rye chromosomes on heading date of Triticale × wheat hybrids, J. Plant Breed. 93 (1984) 246–250.

[30]
K.D, Krolow, 4x-Triticale, production and use in triticale breeding, in: E.R. Sears, L.M.S. Sears (Eds.), Proceedings of 4th International Wheat Genetics Symposium, Columbia, Missouri, USA, August 6–11, 1973, University of MissouriColumbia, Columbia, Missouri, USA 1973, pp. 237–243.
[31]

A.J. Lukaszewski, Chromosome constitution of hexaploid triticale lines in the recent international yield trials, Plant Breed. 100 (1988) 268–272.

[32]

S.L. Fu, Z.L. Lv, X. Guo, X.Q. Zhang, F.P. Han, Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids, J. Genet. Genomics 40 (2013) 413–420.

[33]

Z. Liu, W. Yue, D. Li, R.R.C. Wang, X. Kong, K. Lu, G. Wang, Y. Dong, W. Jin, X. Zhang, Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres, Chromosoma 117 (2008) 445–456.

[34]

F. Han, B. Liu, G. Fedak, Z. Liu, Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis, Theor. Appl. Genet. 109 (2004) 1070–1076.

[35]

Z. Xiao, S. Tang, L. Qiu, Z. Tang, S. Fu, Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgrounds, Molecules 22 (2017) 973.

[36]

Z. Tang, Z. Yang, S. Fu, Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis, J. Appl. Genet. 55 (2014) 313–318.

[37]

S. Fu, L. Chen, Y. Wang, M. Li, Z. Yang, L. Qiu, B. Yan, Z. Ren, Z. Tang, Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes, Sci. Rep. 5 (2015), 10552.

[38]

F. Han, J.C. Lamb, J.A. Birchler, High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 3238–3243.

[39]

H.J. Zhai, Z.Y. Feng, X.Y. Liu, X.J. Cheng, H.R. Peng, Y.Y. Yao, Q.X. Sun, Z.F. Ni, A genetic linkage map with 178 SSR and 1901 SNP markers constructed using a RIL population in wheat (Triticum aestivum L.), J. Integr. Agric. 14 (2015) 1697–1705.

[40]

C. Yin, H. Li, S. Li, L. Xu, Z. Zhao, J. Wang, Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines, Theor. Appl. Genet. 128 (2015) 1969–1986.

[41]

P.J. Sharp, M. Kreis, P.R. Shewry, M.D. Gale, Location of Beta-amylase sequences in wheat and its relatives, Theo. Appl. Genet. 75 (1988) 286–290.

[42]

S. Marklund, R. Chaudhary, L. Marklund, K. Sandberg, L. Andersson, Extensive mtDNA diversity in horses revealed by PCR-SSCP analysis, Anim. Genet. 26 (1995) 193–196.

[43]

G. Li, Z. He, R.J. Peña, X. Xia, M. Lillemo, Q. Sun, Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines, J. Cereal Sci. 43 (2006) 378–386.

[44]
A.R. Hede, A new approach to triticale improvement, in: Research Highlights of the CIMMYT Wheat Program 1999–2000, CIMMYT, Mexico, D.F., Mexico, 2001.
[45]

H. Liu, X. Zhou, X. Li, J. Chen, D. Cui, F. Chen, Molecular characterization of secaloindoline genes in introduced CIMMYT primary hexaploid triticale, Crop J. 5 (2017) 430–437.

[46]

J. Zhou, H. Zhang, Z. Yang, G. Li, L. Hu, M. Lei, C. Liu, Y. Zhang, Z. Ren, Characterization of a new T2DS.2DL-?R translocation triticale ZH-1 with multiple resistances to diseases, Genet. Resour. Crop. Evol. 59 (2011) 1161–1168.

[47]

G. Li, D. Gao, H. Zhang, J. Li, H. Wang, S. La, J. Ma, Z. Yang, Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species, Mol. Cytogenet. 9 (2016) 6.

[48]

X. Yang, C. Wang, X. Li, C. Chen, Z. Tian, Y. Wang, W. Ji, Development and molecular cytogenetic identification of a novel wheat-leymus mollis Lm#7Ns (7D) disomic substitution line with stripe rust resistance, PLoS One 10 (2015), e0140227.

[49]

A.L. Rayburn, B.S. Gill, Molecular identification of the D-genome chromosomes of wheat, J. Hered. 77 (1986) 253–255.

[50]

S. Heckmann, J. Macas, K. Kumke, J. Fuchs, V. Schubert, L. Ma, P. Novak, P. Neumann, S. Taudien, M. Platzer, A. Houben, The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization, Plant J. 73 (2013) 555–565.

[51]

P. Chen, W. Liu, J. Yuan, X. Wang, B. Zhou, S. Wang, S. Zhang, Y. Feng, B. Yang, G. Liu, D. Liu, L. Qi, P. Zhang, B. Friebe, B.S. Gill, Development and characterization of wheat- Leymus racemosus translocation lines with resistance to Fusarium head blight, Theor. Appl. Genet. 111 (2005) 941–948.

[52]

S.S. Xu, J.D. Faris, X. Cai, D.L. Klindworth, Molecular cytogenetic characterization and seed storage protein analysis of 1A/1D translocation lines of durum wheat, Chromosom. Res. 13 (2005) 559–568.

[53]

C.D. Zanke, J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, F. Neumann, A. Eichhorn, A. Polley, C. Jaenecke, M.W. Ganal, M.S. Röder, Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping, Front. Plant Sci. 6 (2015) 644.

[54]

J. Simmonds, P. Scott, M. Leverington-Waite, A.S. Turner, J. Brinton, V. Korzun, J. Snape, C. Uauy, Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.), BMC Plant Biol. 14 (2014) 191.

[55]

F. Breseghello, M.E. Sorrells, QTL analysis of kernel size and shape in two hexaploid wheat mapping populations, Field Crops Res. 101 (2007) 172–179.

[56]

V.C. Gegas, A. Nazari, S. Griffiths, J. Simmonds, L. Fish, S. Orford, L. Sayers, J.H. Doonan, J.W. Snape, A genetic framework for grain size and shape variation in wheat, Plant Cell 22 (2010) 1046–1056.

[57]

A. Farre, L. Sayers, M. Leverington-Waite, R. Goram, S. Orford, L. Wingen, C. Mumford, S. Griffiths, Application of a library of near isogenic lines to understand context dependent expression of QTL for grain yield and adaptive traits in bread wheat, BMC Plant Biol. 16 (2016) 161.

[58]

A. Kumar, E.E. Mantovani, R. Seetan, A. Soltani, M. Echeverry-Solarte, S. Jain, S. Simsek, D. Doehlert, M.S. Alamri, E.M. Elias, S.F. Kianian, M. Mergoum, Dissection of genetic factors underlying wheat kernel shape and size in an elite x nonadapted cross using a high density SNP linkage map, Plant Genome 9 (2016) 1–22.

[59]

J. Brinton, J. Simmonds, F. Minter, M. Leverington-Waite, J. Snape, C. Uauy, Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat, New Phytol. 215 (2017) 1026–1038.

[60]

F. Cui, C. Zhao, A. Ding, J. Li, L. Wang, X. Li, Y. Bao, J. Li, H. Wang, Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations, Theor. Appl. Genet. 127 (2014) 659–675.

[61]

J. Simmonds, P. Scott, J. Brinton, T.C. Mestre, M. Bush, A. Del Blanco, J. Dubcovsky, C. Uauy, A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains, Theor. Appl. Genet. 129 (2016) 1099–1112.

[62]

G. Li, P. Chen, S. Zhang, X. Wang, Z. He, Y. Zhang, H. Zhao, H. Huang, X. Zhou, Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat, Euphytica 155 (2007) 305–313.

[63]

J. Zhang, J. Zhang, W. Liu, H. Han, Y. Lu, X. Yang, X. Li, L. Li, Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length, Theor. Appl. Genet. 128 (2015) 1827–1837.

[64]

Q.J. Song, J.R. Shi, S. Singh, E.W. Fickus, J.M. Costa, J. Lewis, B.S. Gill, R. Ward, P.B. Cregan, Development and mapping of microsatellite (SSR) markers in wheat, Theor. Appl. Genet. 110 (2005) 550–560.

The Crop Journal
Pages 598-607
Cite this article:
Feng Z, Qi Z, Du D, et al. Characterization of a new hexaploid triticale 6D(6A) substitution line with increased grain weight and decreased spikelet number. The Crop Journal, 2019, 7(5): 598-607. https://doi.org/10.1016/j.cj.2019.03.007

308

Views

2

Downloads

4

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 02 December 2018
Revised: 16 March 2019
Accepted: 09 April 2019
Published: 06 June 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return