AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence

Huiran Liua,1Gang Lia,b,1( )Xiujuan Yanga,bHendrik N.J. KuijerbWanqi LiangaDabing Zhanga,b( )
Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
School of Agriculture, Food and Wine, The University of Adelaide, South Australia 5064, Australia

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

1 These authors contributed equally to this work.

Show Author Information

Abstract

The shape of an inflorescence varies among cereals, ranging from a highly branched panicle in rice to a much more compact spike in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). However, little is known about the molecular basis of cereal inflorescence architecture. We profiled transcriptomes at three developmental stages of the barley main shoot apex — spikelet initiation, floral organ differentiation, and floral organ growth — and compared them with those from vegetative seedling tissue. Transcript analyses identified 3688 genes differentially transcribed between the three meristem stages, with a further 1394 genes preferentially expressed in reproductive compared with vegetative tissue. Co-expression assembly and Gene Ontology analysis classified these 4888 genes into 28 clusters, revealing distinct patterns for genes such as transcription factors, histone modification, and cell-cycle progression specific for each stage of inflorescence development. We also compared expression patterns of VRS (SIX-ROWED SPIKE) genes and auxin-, gibberellic acid- and cytokinin-associated genes between two-rowed and six-rowed barley to describe regulators of lateral spikelet fertility. Our findings reveal barley inflorescence phase-specific gene expression, identify new candidate genes that regulate barley meristem activities and flower development, and provide a new genetic resource for further dissection of the molecular mechanisms of spike development.

References

[1]

D. Zhang, Z. Yuan, Molecular control of grass inflorescence development, Annu. Rev. Plant Biol. 65 (2014) 553–578.

[2]

B. Wang, S.M. Smith, J. Li, Genetic regulation of shoot architecture, Annu. Rev. Plant Biol. 69 (2018) 437–468.

[3]

T. Komatsuda, M. Pourkheirandish, C. He, P. Azhaguvel, H. Kanamori, D. Perovic, N. Stein, A. Graner, T. Wicker, A. Tagiri, U. Lundqvist, T. Fujimura, M. Matsuoka, T. Matsumoto, M. Yano, Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 1424–1429.

[4]

R. Koppolu, T. Schnurbusch, Developmental pathways for shaping spike inflorescence architecture in barley and wheat, J. Integr. Plant Biol. (2019) 278–295.

[5]

H. Schoof, M. Lenhard, A. Haecker, K.F. Mayer, G. Jürgens, T. Laux, The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell 100 (2000) 635–644.

[6]

J.A. Long, E.I. Moan, J.I. Medford, M.K. Barton, A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature 379 (1996) 66–69.

[7]

H.M. Youssef, K. Eggert, R. Koppolu, A.M. Alqudah, N. Poursarebani, A. Fazeli, S. Sakuma, A. Tagiri, T. Rutten, G. Govind, U. Lundqvist, A. Graner, T. Komatsuda, N. Sreenivasulu, T. Schnurbusch, VRS2 regulates hormone-mediated inflorescence patterning in barley, Nat. Genet. 49 (2017) 157–161.

[8]

M. Ashikari, H. Sakakibara, S.Y. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E.R. Angeles, Q. Qian, H. Kitano, M. Matsuoka, Cytokinin oxidase regulates rice grain production, Science 309 (2005) 741–745.

[9]

X.C. Gao, W.Q. Liang, C.S. Yin, S.M. Ji, H.M. Wang, X. Su, C.C. Guo, H.Z. Kong, H.W. Xue, D.B. Zhang, The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development, Plant Physiol. 153 (2010) 728–740.

[10]

D. Wu, W.Q. Liang, W. Zhu, M. Chen, C. Ferrandiz, R.A. Burton, L. Dreni, D.B. Zhang, Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice, Plant Physiol. 176 (2018) 1646–1664.

[11]

W. Deng, M.C. Casao, P. Wang, K. Sato, P.M. Hayes, E.J. Finnegan, B. Trevaskis, Direct links between the vernalization response and other key traits of cereal crops, Nat. Commun. 6 (2015) 5882.

[12]

B. Trevaskis, M. Tadege, M.N. Hemming, W.J. Peacock, E.S. Dennis, C. Sheldon, Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley, Plant Physiol. 143 (2007) 225–235.

[13]

K. Houston, S.M. McKim, J. Comadran, N. Bonar, I. Druka, N. Uzrek, E. Cirillo, J. Guzy-Wrobelska, N.C. Collins, C. Halpin, M. Hansson, C. Dockter, A. Druka, R. Waugh, Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 16675–16680.

[14]

N. Sreenivasulu, T. Schnurbusch, A genetic playground for enhancing grain number in cereals, Trends Plant Sci. 17 (2012) 91–101.

[15]

S.R. Waddington, P.M. Cartwright, P.C. Wall, A quantitative scale of spike initial and pistil development in barley and wheat, Ann. Bot. 51 (1983) 119–130.

[16]

International Barley Genome Sequencing Consortium, A physical, genetic and functional sequence assembly of the barley genome, Nature 491 (2012) 711–716.

[17]

M. Mascher, H. Gundlach, A. Himmelbach, S. Beier, S.O. Twardziok, T. Wicker, V. Radchuk, C. Dockter, P.E. Hedley, A chromosome conformation capture ordered sequence of the barley genome, Nature 544 (2017) 427–433.

[18]

B. Digel, A. Pankin, M. von Korff, Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley, Plant Cell 27 (2015) 2318–2334.

[19]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[20]

M. Pertea, D. Kim, G.M. Pertea, J.T. Leek, S.L. Salzberg, Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown, Nat. Protoc. 11 (2016) 1650–1667.

[21]

S. Anders, P.T. Pay, W. Huber, HTSeq – a Python framework to work with high-throughput sequencing data, Bioinformatics 31 (2015) 166–169.

[22]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550.

[23]

Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B Methodol. 57 (1995) 289–300.

[24]

K.Y. Oróstica, R.A. Verdugo, ChromPlot: visualization of genomic data in chromosomal context, Bioinformatics 32 (2016) 2366–2368.

[25]

Y. Si, P. Liu, P. Li, T.P. Brutnell, Model-based clustering for RNA-seq data, Bioinformatics 30 (2014) 197–205.

[26]

G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS: A Journal of Integrative Biology 16 (2012) 284–287.

[27]

F. Supek, M. Bošnjak, N. Škunca, T. Šmuc, REVIGO summarizes and visualizes long lists of gene ontology terms, PLoS One 6 (2011) e21800.

[28]

G. Li, W.Q. Liang, X.Q. Zhang, H. Ren, J. Hu, M.J. Bennett, D.B. Zhang, Rice actin-binding protein RMD is a key link in the auxin–actin regulatory loop that controls cell growth, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 10377–10382.

[29]

D. Weigel, J. Alvarez, D.R. Smyth, M.F. Yanofsky, E.M. Meyerowitz, LEAFY controls floral meristem identity in Arabidopsis, Cell 69 (1992) 843–859.

[30]

Y. Mizukami, R.L. Fischer, Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 942–947.

[31]

C. Liu, Z.W. Teo, Y. Bi, S. Song, W. Xi, X. Yang, Z. Yin, H. Yu, A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice, Dev. Cell 24 (2013) 612–622.

[32]

B. Veit, S.P. Briggs, R.J. Schmidt, M.F. Yanofsky, S. Hake, Regulation of leaf initiation by the terminal ear 1 gene of maize, Nature 393 (1998) 166–168.

[33]

I. Kardailsky, V.K. Shukla, J.H. Ahn, N. Dagenais, S.K. Christensen, J.T. Nguyen, J. Chory, M.J. Harrison, D. Weigel, Activation tagging of the floral inducer FT, Science 286 (1999) 1962–1965.

[34]

B.I. Je, J. Gruel, Y.K. Lee, P. Bommert, E.D. Arevalo, A.L. Eveland, Q. Wu, A. Goldshmidt, R. Meeley, M. Bartlett, M. Komatsu, H. Sakai, H. Jönsson, D. Jackson, Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits, Nat. Genet. 48 (2016) 785–791.

[35]

M. Pautler, A.L. Eveland, T. LaRue, F. Yang, R. Weeks, C. Lunde, B.I. Je, R. Meeley, M. Komatsu, E. Vollbrecht, H. Sakai, D. Jackson, FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize, Plant Cell 27 (2015) 104–120.

[36]

M. Xu, T. Hu, S.M. McKim, J. Murmu, G.W. Haughn, S.R. Hepworth, Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24, Plant J. 63 (2010) 974–989.

[37]

N. Feng, G.Y. Song, J.T. Guan, K. Chen, M.L. Jia, D.H. Huang, J.J. Wu, L.C. Zhang, X.Y. Kong, S.F. Geng, J. Liu, A.L. Li, L. Mao, Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes, Plant Physiol. 174 (2017) 1779–1794.

[38]

H. Wang, L. Zhang, Q. Cai, Y. Hu, Z. Jin, X. Zhao, W. Fan, Q. Huang, Z. Luo, M. Chen, D. Zhang, Z. Yuan, OsMADS32 interacts with PI-like proteins and regulates rice flower development, J. Integr. Plant Biol. 57 (2015) 504–513.

[39]

C. Raynaud, A.C. Mallory, D. Latrasse, T. Jégu, Q. Bruggeman, M. Delarue, M. Benhamed, Chromatin meets the cell cycle, J. Exp. Bot. 65 (2014) 2677–2689.

[40]

H. Bull, M.C. Casao, M. Zwirek, A.J. Flavell, W.T.B. Thomas, W.B. Guo, R.X. Zhang, P. Rapazote-Flores, S. Kyriakidis, J. Russell, A. Druka, S.M. McKim, R. Waugh, Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility, Nat. Commun. 8 (2017) 936.

[41]

L. Ramsay, J. Comadran, A. Druka, D.F. Marshall, W.T. Thomas, M. Macaulay, K. MacKenzie, C. Simpson, J. Fuller, N. Bonar, P.M. Hayes, U. Lundqvist, J.D. Franckowiak, T.J. Close, G.J. Muehlbauer, R. Waugh, INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1, Nat. Genet. 43 (2011) 169–172.

[42]

K. Ikeda-Kawakatsu, M. Maekawa, T. Izawa, J.I. Itoh, Y. Nagato, ABERRANT PANICLE ORGANIZATION2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1, Plant J. 69 (2012) 168–180.

[43]

S. Soyk, Z.H. Lemmon, M. Oved, J. Fisher, K.L. Liberatore, S.J. Park, A. Goren, K. Jiang, A. Ramos, E. van der Knaap, J. Van Eck, D. Zamir, Y. Eshed, Z.B. Lippman, Bypassing negative epistasis on yield in tomato imposed by a domestication gene, Cell 169 (2017) 1142–1155.

[44]

J.W. Wang, B. Czech, D. Weigel, miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana, Cell 138 (2009) 738–749.

[45]

T.W.R. Harrop, I. Ud Din, V. Gregis, M. Osnato, S. Jouannic, H. Adam, M.M. Kater, Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection, Plant J. 86 (2016) 75–88.

[46]

Y. Zhao, L. Medrano, K. Ohashi, J.C. Fletcher, H. Yu, H. Sakai, E.M. Meyerowitz, HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis, Plant Cell 16 (2004) 2586–2600.

[47]

E. Kraft, M. Bostick, S.E. Jacobsen, J. Callis, ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases, Plant J. 56 (2008) 704–715.

[48]

O. Pontes, C.F. Li, P.C. Nunes, J. Haag, T. Ream, A. Vitins, S.E. Jacobsen, C.S. Pikaard, The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center, Cell 126 (2006) 79–92.

[49]

I.A. Swinburne, C.A. Meyer, X.S. Liu, P.A. Silver, A.S. Brodsky, Genomic localization of RNA binding proteins reveals links between pre-mRNA processing and transcription, Genome Res. 16 (2006) 912–921.

[50]

F. Micheli, Pectin methylesterases: cell wall enzymes with important roles in plant physiology, Trends Plant Sci. 6 (2001) 414–419.

[51]

S.J. McQueen-Mason, D.J. Cosgrove, Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding), Plant Physiol. 107 (1995) 87–100.

[52]

N. Sharma, R. Xin, D.H. Kim, S. Sung, T. Lange, E. Huq, No flowering in short day (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis, Development 143 (2016) 682–690.

[53]

P. Bommert, C. Whipple, Grass inflorescence architecture and meristem determinacy, Semin. Cell Dev. Biol. 79 (2018) 37–47.

[54]

G.W. van Esse, A. Walla, A. Finke, M. Koornneef, A. Pecinka, M. von Korff, Six-rowed spike 3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley, Plant Physiol. 174 (2017) 2397–2408.

The Crop Journal
Pages 71-86
Cite this article:
Liu H, Li G, Yang X, et al. Transcriptome profiling reveals phase-specific gene expression in the developing barley inflorescence. The Crop Journal, 2020, 8(1): 71-86. https://doi.org/10.1016/j.cj.2019.04.005

279

Views

8

Downloads

21

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 16 March 2019
Revised: 26 April 2019
Accepted: 29 May 2019
Published: 06 June 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return