AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat

Kunpu Zhanga,b( )Junjun WangaHuanju QinaZhiying WeicLibo HangcPengwei ZhangcMatthew ReynoldsdDaowen Wanga,b( )
State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
Zhaoxian Institute of Agricultural Sciences, Zhaoxian 051530, Hebei, China
CIMMYT, Int. Apdo. Postal 6-641, 06600 México, DF, Mexico

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Grain yield in cereal crops is a complex trait controlled by multiple genes and influenced by developmental processes and environment. Here we report the effects of alleles Rht8 and Ppd-D1a on plant height, time to heading, and grain yield and its component traits. Association analysis and quantitative trait locus mapping using phenotypic data from 15 environments led to the following conclusions. First, both Rht8 and Ppd-D1a reduce plant height. However, Ppd-D1a but not Rht8 causes earlier heading. Second, both Rht8 and Ppd-D1a promote grain yield and affect component traits. Their combined effects are substantially larger than those conferred by either allele alone. Third, promotion of grain yield by Rht8 and Ppd-D1a is through increasing fertile spikelet number. We speculate that Rht8 and Ppd-D1a act independently and additively in control of plant height, grain yield and yield component. Combination of the two alleles is desirable for adjusting plant height and enhancing grain yield and abiotic stress tolerance.

References

[1]

P. Grassini, K.M. Eskridge, K.G. Cassman, Distinguishing between yield advances and yield plateaus in historical crop production trends, Nat. Commun. 4 (2013) 2918.

[2]

J.A. Foley, N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O'Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockström, J. Sheehan, S. Siebert, D. Tilman, D.P. Zaks, Solutions for a cultivated planet, Nature 478 (2011) 337–342.

[3]

J.L. Araus, G.A. Slafer, C. Royo, M.D. Serret, Breeding for yield potential and stress adaptation in cereals, Crit. Rev. Plant Sci. 27 (2008) 377–412.

[4]

N. Sreenivasulu, T. Schnurbusch, A genetic playground for enhancing grain number in cereals, Trends Plant Sci. 17 (2012) 91–101.

[5]

K. Neumann, B. Kobiljski, S. Denčić, R.K. Varshney, A. Börner, Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.), Mol. Breed. 27 (2011) 37–58.

[6]

D. Bennett, A. Izanloo, M. Reynolds, H. Kuchel, P. Langridge, T. Schnurbusch, Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments, Theor. Appl. Genet. 125 (2012) 255–271.

[7]

D. Bennett, M.P. Reynolds, D.A. Mullan, A. Izanloo, H. Kuchel, P. Langridge, T. Schnurbusch, Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments, Theor. Appl. Genet. 125 (2012) 1473–1485.

[8]

L. Maphosa, P. Langridge, H. Taylor, B. Parent, L.C. Emebiri, H. Kuchel, M.P. Reynolds, K.J. Chalmers, A. Okada, J. Edwards, D.E. Mather, Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions, Theor. Appl. Genet. 127 (2014) 1607–1624.

[9]

M.J. Foulkes, R. Sylvester-Bradley, A.J. Worland, J.W. Snape, Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat, Euphytica 135 (2004) 63–73.

[10]

U.M. Quraishi, M. Abrouk, F. Murat, C. Pont, S. Foucrier, G. Desmaizieres, C. Confolent, N. Rivière, G. Charmet, E. Paux, A. Murigneux, L. Guerreiro, S. Lafarge, J. le Gouis, C. Feuillet, J. Salse, Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution, Plant J. 65 (2011) 745–756.

[11]

M. Reynolds, J. Foulkes, R. Furbank, S. Griffiths, J. King, E. Murchie, M. Parry, G. Slafer, Achieving yield gains in wheat, Plant Cell Environ. 35 (2012) 1799–1823.

[12]

A.J. Worland, C.N. Law, Genetic analysis of chromosome 2D of wheat. 1. The location of genes effecting height, day length insensitivity, hybrid dwarfism and yellow rust resistance, Plant Breed. 96 (1986) 331–345.

[13]

V. Korzun, M.S. Roder, M.W. Ganal, A.J. Worland, C.N. Law, Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.), Theor. Appl. Genet. 96 (1998) 1104–1109.

[14]

D. Gasperini, A. Greenland, P. Hedden, R. Dreos, W. Harwood, S. Griffiths, Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids, J. Exp. Bot. 63 (2012) 4419–4436.

[15]

J.E. Flintham, A. Börner, A.J. Worland, M.D. Gale, Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes, J. Agric. Sci. 128 (1997) 11–15.

[16]

G.J. Rebetzke, R. Appels, A. Morrison, R.A. Richards, G. McDonald, M.H. Ellis, W. Spielmeyer, D.G. Bonnett, Quantitative trait loci on chromosome 4B for coleoptile length and early vigor in wheat (Triticum aestivum L.), Aus. J. Agric. Res. 52 (2001) 1221–1234.

[17]

G.J. Rebetzke, M.H. Ellis, D.G. Bonnett, A.G. Condon, D. Falk, R.A. Richards, The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat, Field Crops Res. 124 (2011) 323–331.

[18]

E.P. Wilhelm, M.I. Boulton, N. Al-Kaff, F. Balfourier, J. Bordes, A.J. Greenland, W. Powell, I.J. Mackay, Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection, Theor. Appl. Genet. 126 (2013) 2233–2243.

[19]

A.J. Worland, V. Korzun, M.S. Roder, M.W. Ganal, C.N. Law, Genetic analysis of the dwarfing gene Rht8 in wheat. Part Ⅱ. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening, Theor. Appl. Genet. 96 (1998) 1110–1120.

[20]

M.H. Ellis, D.G. Bonnett, G.J. Rebetzke, A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.), Euphytica 157 (2007) 209–214.

[21]

Y. Liu, D.C. Liu, H.Y. Zhang, J. Wang, J.Z. Sun, X.L. Guo, A.M. Zhang, Allelic variation, sequence determination and micro-satellite screening at the XGWM261 locus in Chinese hexaploid wheat (Triticum aestivum) varieties, Euphytica 145 (2005) 103–112.

[22]

X.K. Zhang, S.J. Yang, Y. Zhou, Z.H. He, X.C. Xia, Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers, Euphytica 152 (2006) 109–116.

[23]

L. Asplund, M.W. Leino, J. Hagenblad, Allelic variation at the Rht8 locus in a 19th century wheat collection, Sci. World J. 2012 (2012) 385610.

[24]

A. Börner, A.J. Worland, J. Plaschke, E. Schumann, C.N. Law, Pleiotropic effects of genes for reduced height (Rht) and day length insensitivity (Ppd1) on yield and its components for wheat grown in middle Europe, Plant Breed. 111 (1993) 204–216.

[25]

A.J. Worland, E.J. Sayers, V. Korzun, Allelic variation at the dwarf gene Rht8 locus and its significance in international wheat breeding programmes, Euphytica 119 (2001) 155–159.

[26]

M. Addisu, J.W. Snape, J.R. Simmonds, M.J. Gooding, Effects of reduced height (Rht) and photoperiod insensitivity (Ppd) alleles on yield of wheat in contrasting production systems, Euphytica 172 (2010) 169–181.

[27]

X. Wu, X. Chang, R. Jing, Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments, PLoS One 7 (2012) e31249.

[28]

C. Zhao, F. Cui, Z. Fan, J. Li, A. Ding, H. Wang, Genetic analysis of important loci in the winter wheat backbone parent Aimengniu-V, Aus. J. Crop Sci. 7 (2013) 182–188.

[29]

Y. Xu, R. Wang, Y. Tong, H. Zhao, Q. Xie, D. Liu, A. Zhang, B. Li, H. Xu, D. An, Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression, Theor. Appl. Genet. 127 (2014) 59–72.

[30]

J. Beales, A. Turner, S. Griffiths, J.W. Snape, D.A. Laurie, A pseudo-response regulator is mis-expressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.), Theor. Appl. Genet. 115 (2007) 721–733.

[31]

L.M. Shaw, A.S. Turner, D.A. Laurie, The impact of photoperiod insensitive Ppd-D1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum), Plant J. 71 (2012) 71–84.

[32]

K. Cane, H.A. Eagles, D.A. Laurie, B. Trevaskis, N. Vallance, R.F. Eastwood, N.N. Gororo, H. Kuchel, P.J. Martin, Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat, Crop Pasture Sci. 64 (2013) 100–114.

[33]

Z.A. Guo, Y.X. Song, R.H. Zhou, Z.L. Ren, J.Z. Jia, Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene, New Phytol. 185 (2010) 841–851.

[34]

A.J. Worland, The influence of flowering time genes on environmental adaptability in European wheats, Euphytica 89 (1996) 49–57.

[35]

G.O. Chebotar, S.V. Chebotar, I.I. Motsnyy, Y.M. Sivolap, Clarification of the Rht8-Ppd-D1 gene linkage on the 2D chromosome of winter bread wheat, Cytol. Genet. 47 (2013) 70–74.

[36]

M.J. Foulkes, G.A. Slafer, W.J. Davies, P.M. Berry, R. Sylvester-Bradley, P. Martre, D.F. Calderini, S. Griffiths, M.P. Reynolds, Raising yield potential of wheat. Ⅲ. Optimizing partitioning to grain while maintaining lodging resistance, J. Exp. Bot. 62 (2011) 469–486.

[37]

K.P. Zhang, J.J. Wang, L.Y. Zhang, C.W. Rong, F.W. Zhao, T. Peng, H.M. Li, D.M. Cheng, X. Liu, H.J. Qin, A.M. Zhang, Y.P. Tong, D.W. Wang, Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply, PLoS One 8 (2013) e57853.

[38]

K.P. Zhang, G.F. Chen, L. Zhao, B. Liu, X.B. Xu, J.C. Tian, Molecular genetic analysis of flour color using a doubled haploid population in bread wheat (Triticum aestivum L.), Euphytica 165 (2009) 471–484.

[39]
Z.H. He, A.P.A. Bonjean, Cereals in China, CIMMYT, Mexico D. F., Mexico, 2010.
[40]

Y. Hai, M.H. Kang, Breeding of a new wheat variety Huapei 3 with high yield and early maturing, Henan Agric. Sci. 5 (2007) 36–37 (in Chinese with English abstract).

[41]
C.Q. Guo, Z.A. Bai, P.A. Liao, W.K. Jin, New high quality and yield wheat variety Yumai 57, China Seed Ind. (4) (2004) 54 (in Chinese).
[42]

G.J. Bryan, A.J. Collins, P. Stephenson, A. Orry, J.B. Smith, M.D. Gale, Isolation and characterization of microsatellites from hexaploid bread wheat, Theor. Appl. Genet. 94 (1997) 557–563.

[43]
S.E. Lincoln, M.J. Daly, E.S. Lander, Constructing Genetic Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual, 3rd ed Whitehead Institute, Cambridge, MA, USA, 1993.
[44]

K.P. Zhang, L. Zhao, J.C. Tian, G.F. Chen, X.L. Jiang, B. Liu, A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties, J. Integr. Plant Biol. 50 (2008) 941–950.

[45]

R.E. Voorrips, MapChart, software for the graphical presentation of linkage maps and QTLs, J. Hered. 93 (2002) 77–78.

[46]

G.H. Bai, M.K. Das, B.F. Carver, X.Y. Xu, E.G. Krenzer, Co-variation foe microsatellite alleles associated with Rht8 and coleoptile length in winter wheat, Crop Sci. 44 (2004) 1187–1194.

[47]

F.P. Yang, X.K. Zhang, X.C. Xia, D.A. Laurie, W.X. Yang, Z.H. He, Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars, Euphytica 165 (2008) 445–452.

[48]

S.A. Quarrie, A. Steed, C. Calestani, A. Semikhodskii, C. Lebreton, C. Chinoy, N. Steele, D. Pljevljakusic, E. Waterman, J. Weyen, J. Schondelmaier, D.Z. Habash, P. Farmer, L. Saker, D.T. Clarkson, A. Abugalieva, M. Yessimbekova, Y. Turuspekov, S. Abugalieva, R. Tuberosa, M.C. Sanguineti, P.A. Hollington, R. Aragués, A. Royo, D. Dodig, A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese spring × SQ1 and its use to compare QTLs for grain yield across a range of environments, Theor. Appl. Genet. 110 (2005) 865–880.

[49]

A. Laperche, M. Brancourt-Hulmel, E. Heumez, O. Gardet, E. Hanocq, F. Devienne-Barret, J. le Gouis, Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints, Theor. Appl. Genet. 115 (2007) 399–415.

[50]

S. Liu, J.C. Rudd, G.H. Bai, S.D. Haley, A.M.H. Ibrahim, Q. Xue, D.B. Hays, R.A. Graybosch, R.N. Devkota, P.S. Amand, Molecular markers linked to important genes in hard winter wheat, Crop Sci. 54 (2014) 1304–1321.

The Crop Journal
Pages 845-856
Cite this article:
Zhang K, Wang J, Qin H, et al. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. The Crop Journal, 2019, 7(6): 845-856. https://doi.org/10.1016/j.cj.2019.06.008

251

Views

1

Downloads

12

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 19 December 2018
Revised: 11 March 2019
Accepted: 02 August 2019
Published: 10 August 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return