AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genome-wide association study of vitamin E in sweet corn kernels

Yingni Xiaoa,1Yongtao Yua,1Gaoke Lia,1Lihua Xiea,bXinbo GuobJiansheng LicYuliang LiaJianguang Hua( )
Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crops Genetics and Improvement of Guangdong Province, Guangzhou 510640, Guangdong, China
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China

1 These authors contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Vitamin E, consisting of tocopherols and tocotrienols, serves as a lipid-soluble antioxidant in sweet corn kernels, providing nutrients to both plants and humans. Though the key genes involved in the vitamin E biosynthesis pathway have been identified in plants, the genetic architecture of vitamin E content in sweet corn kernels remains largely unclear. In the present study, an association panel of 204 inbred lines of sweet corn was constructed. Seven compounds of vitamin E were quantified in sweet corn kernels at 28 days after pollination. A total of 119 loci for vitamin E were identified using a genome-wide association study based on genotyping by sequencing, and a genetic network of vitamin E was constructed. Candidate genes identified were involved mainly in RNA regulation and protein metabolism. The known gene ZmVTE4, encoding γ-tocopherol methyltransferase, was significantly associated with four traits (α-tocopherol, α-tocotrienol, the α/γ-tocopherol ratio, and the α/γ-tocotrienol ratio). The effects of two causative markers on ZmVTE4 were validated by haplotype analysis. Finally, two elite cultivars (Yuetian 9 and Yuetian 22) with a 4.5-fold increase in the sum of α- and γ-tocopherols were developed by marker-assisted selection, demonstrating the successful biofortification of sweet corn. Three genes (DAHPS, ADT2, and cmu2) involved in chorismate and tyrosine synthesis were significantly associated with the α/γ-tocotrienol ratio. These results shed light on the genetic architecture of vitamin E and may accelerate the nutritional improvement of sweet corn.

References

[1]

D. DellaPenna, B.J. Pogson, Vitamin synthesis in plants: tocopherols and carotenoids, Annu. Rev. Plant Biol. 57 (2006) 711–738.

[2]

S. Péter, A. Friedel, F.F. Roos, A. Wyss, M. Eggersdorfer, K. Hoffmann, P. Weber, A systematic review of global alpha-tocopherol status as assessed by nutritional intake levels and blood serum concentrations, Int, J. Vitam Nutr. Res. 14 (2016) 1–21.

[3]

M.E. Wright, K.A. Lawson, S.J. Weinstein, P. Pietinen, P.R. Taylor, J. Virtamo, D. Albanes, Higher baseline serum concentrations of vitamin E are associated with lower total and cause-specific mortality in the alpha-tocopherol, beta-carotene cancer prevention study, Am. J. Clin. Nutr. 84 (2006) 1200–1207.

[4]
D. DellaPenna, L. Mène-Saffrané, Chapter 5 — Vitamin E, in: F.Rébeilléand, R. Douce (Eds.), Advances in Botanical Research, Elsevier, Amsterdam, the Netherlands 2011, pp. 179–227.
[5]

A. Kamal-Eldin, L.A. Appelqvist, The chemistry and antioxidant properties of tocopherols and tocotrienols, Lipids 31 (1996) 671–701.

[6]

S.R. Norris, X. Shen, D. DellaPenna, A decade of progress in understanding vitamin E synthesis in plants, J. Plant Physiol. 162 (2005) 729–737.

[7]

S.R. Norris, X. Shen, D. DellaPenna, Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase, Plant Physiol. 117 (1998) 1317–1323.

[8]

E.B. Cahoon, S.E. Hall, K.G. Ripp, T.S. Ganzke, W.D. Hitz, S.J. Coughlan, Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content, Nat. Biotechnol. 21 (2003) 1082–1087.

[9]

Z. Cheng, S. Sattler, H. Maeda, Y. Sakuragi, D.A. Bryant, D. DellaPenna, Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes, Plant Cell 15 (2003) 2343–2356.

[10]

D. Shintani, D. DellaPenna, Elevating the vitamin E content of plants through metabolic engineering, Science 282 (1998) 2098–2100.

[11]

H.E. Valentin, K. Lincoln, F. Moshiri, P.K. Jensen, Q. Qi, T.V. Venkatesh, B. Karunanandaa, S.R. Baszis, S.R. Norris, B. Savidge, K.J. Gruys, R.L. Last, The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis, Plant Cell 18 (2006) 212–224.

[12]

K. vom Dorp, G. Holzl, C. Plohmann, M. Eisenhut, M. Abraham, A.P. Weber, A.D. Hanson, P. Dormann, Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis, Plant Cell 27 (2015) 2846–2859.

[13]

H. Li, Z. Peng, X. Yang, W. Wang, J. Fu, J. Wang, Y. Han, Y. Chai, T. Guo, N. Yang, J. Liu, M.L. Warburton, Y. Cheng, X. Hao, P. Zhang, J. Zhao, Y. Liu, G. Wang, J. Li, J. Yan, Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels, Nat. Genet. 45 (2013) 43–50.

[14]

X. Wang, H. Wang, S. Liu, A. Ferjani, J. Li, J. Yan, X. Yang, F. Qin, Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings, Nat. Genet. 48 (2016) 1233–1241.

[15]

Q. Yang, Z. Li, W. Li, L. Ku, C. Wang, J. Ye, K. Li, N. Yang, Y. Li, T. Zhong, J. Li, Y. Chen, J. Yan, X. Yang, M. Xu, CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 16969–16974.

[16]

C.H. Diepenbrock, C.B. Kandianis, A.E. Lipka, M. Magallanes-Lundback, B. Vaillancourt, E. Gongora-Castillo, J.G. Wallace, J. Cepela, A. Mesberg, P.J. Bradbury, D.C. Ilut, M. Mateos-Hernandez, J. Hamilton, B.F. Owens, T. Tiede, E.S. Buckler, T. Rocheford, C.R. Buell, M.A. Gore, D. DellaPenna, Novel loci underlie natural variation in vitamin E levels in maize grain, Plant Cell 29 (2017) 2374–2392.

[17]

Q. Li, X. Yang, S. Xu, Y. Cai, D. Zhang, Y. Han, L. Li, Z. Zhang, S. Gao, J. Li, J. Yan, Genome-wide association studies identified three independent polymorphisms associated with alpha-tocopherol content in maize kernels, PLoS One 7 (2012) e36807.

[18]

A.E. Lipka, M.A. Gore, M. Magallanes-Lundback, A. Mesberg, H. Lin, T. Tiede, C. Chen, C.R. Buell, E.S. Buckler, T. Rocheford, D. DellaPenna, Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain, G3-Genes Genomes Genet. 3 (2013) 1287–1299.

[19]

H. Wang, S. Xu, Y. Fan, N. Liu, W. Zhan, H. Liu, Y. Xiao, K. Li, Q. Pan, W. Li, M. Deng, J. Liu, M. Jin, X. Yang, J. Li, Q. Li, J. Yan, Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses, Plant Biotechnol. J. 16 (2018) 1464–1475.

[20]
W.F. Tracy, Sweet corn, in: A.R. Hallauer (Ed.), SpecialtyCorns, CRC Press, Boca Raton, Florida, USA 2000, pp. 167–210.
[21]

L. Xie, Y. Yu, J. Mao, H. Liu, J.G. Hu, T. Li, X. Guo, R.H. Liu, Evaluation of biosynthesis, accumulation and antioxidant activityof vitamin, E in sweet corn (Zea mays L.) during kernel development, Int. J. Mol. Sci. 18 (2017) 2780.

[22]

M. Baseggio, M. Murray, M. Magallanes-Lundback, N. Kaczmar, J. Chamness, E.S. Buckler, M.E. Smith, D. DellaPenna, W.F. Tracy, M.A. Gore, Genome-wide association and genomic prediction models of tocochromanols in fresh sweet corn kernels, Plant Genome 11 (2018) 180038.

[23]
D.M. Bates, lme4: Mixed-effects modeling with R, Springer, New York (in preparation), http://lme4.r-forge.r-project.org/book/.
[24]

S. Knapp, W. Stroup, W. Ross, Exact confidence intervals for heritability on a progeny mean basis, Crop Sci. 25 (1985) 192–194.

[25]

M.G. Murray, W.F. Thompson, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res. 8 (1980) 4321–4325.

[26]

R.J. Elshire, J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler, S.E. Mitchell, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One 6 (2011) e19379.

[27]

H. Sonah, M. Bastien, E. Iquira, A. Tardivel, G. Legare, B. Boyle, E. Normandeau, J. Laroche, S. Larose, M. Jean, F. Belzile, An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping, PLoS One 8 (2013) e54603.

[28]

B.L. Browning, S.R. Browning, Genotype imputation with millions of reference samples, Am. J. Hum. Genet. 98 (2016) 116–126.

[29]

P. Cingolani, A. Platts, L.L. Wang, M. Coon, T. Nguyen, L. Wang, S.J. Land, X. Lu, D.M. Ruden, A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3, Fly (Austin) 6 (2012) 80–92.

[30]

C.C. Chang, C.C. Chow, L.C. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, Second-generation PLINK: rising to the challenge of larger and richer datasets, GigaScience 4 (2015) 7.

[31]

J.B. Endelman, J.L. Jannink, Shrinkage estimation of the realized relationship matrix, G3-Genes Genomes Genet. 2 (2012) 1405–1413.

[32]

P.J. Bradbury, Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, E.S. Buckler, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633–2635.

[33]

J. Yang, S.H. Lee, M.E. Goddard, P.M. Visscher, GCTA: a tool for genome-wide complex trait analysis, Am. J. Hum. Genet. 88 (2011) 76–82.

[34]

X. Yang, S. Gao, S. Xu, Z. Zhang, B.M. Prasanna, L. Li, J. Li, J. Yan, Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize, Mol. Breed. 28 (2011) 511–526.

[35]

P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003) 2498–2504.

[36]

M.G. Stacey, S. Koh, J. Becker, G. Stacey, AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis, Plant Cell 14 (2002) 2799–2811.

[37]

Y.F. Tsay, C.C. Chiu, C.B. Tsai, C.H. Ho, P.K. Hsu, Nitrate transporters and peptide transporters, FEBS Lett. 581 (2007) 2290–2300.

[38]

S.C. Hunter, E.B. Cahoon, Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis, Lipids 42 (2007) 97–108.

[39]

R.M. Romero, M.F. Roberts, J.D. Phillipson, Chorismate mutase in microorganisms and plants, Phytochemistry 40 (1995) 1015–1025.

[40]

H. Maeda, N. Dudareva, The shikimate pathway and aromatic amino acid biosynthesis in plants, Annu. Rev. Plant Biol. 63 (2012) 73–105.

[41]
C.H. Foyer, A. Trebst, G. Noctor, Signaling and integration ofdefense functions of tocopherol, ascorbate and glutathione, in: B. Demmig-Adams, W.W.I.I.I. Adams, A.K. Mattoo (Eds.), Photoprotection, Photoinhibition, Gene Regulation, and Environment, Springer, Dordrecht, the Netherlands 2008, pp. 241–268.
[42]

M.J. Bae, Y.S. Kim, I.S. Kim, Y.H. Choe, E.J. Lee, Y.H. Kim, H.M. Park, H.S. Yoon, Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions, Mol. Breed. 31 (2013) 931–945.

[43]

M.J. Aranzana, S. Kim, K. Zhao, E. Bakker, M. Horton, K. Jakob, C. Lister, J. Molitor, C. Shindo, C. Tang, C. Toomajian, B. Traw, H. Zheng, J. Bergelson, C. Dean, P. Marjoram, M. Nordborg, Genome-wide association mapping in Arabidopsis thaliana identifies previously known genes responsible for variation in flowering time and pathogen resistance, PLoS Genet. 1 (2005) e60.

[44]

X. Huang, Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, Y. Guo, L. Deng, C. Zhu, D. Fan, Y. Lu, Q. Weng, K. Liu, T. Zhou, Y. Jing, L. Si, G. Dong, T. Huang, T. Lu, Q. Feng, Q. Qian, J. Li, B. Han, Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm, Nat. Genet. 44 (2012) 32–39.

[45]

N. Yang, Y. Lu, X. Yang, J. Huang, Y. Zhou, F. Ali, W. Wen, J. Liu, J. Li, J. Yan, Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel, PLoS Genet. 10 (2014) e1004573.

[46]

A. Beló, P. Zheng, S. Luck, B. Shen, D.J. Meyer, B. Li, S. Tingey, A. Rafalski, Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize, Mol. Genet. Genomics 279 (2008) 1–10.

[47]

Y. Shang, Y. Ma, Y. Zhou, H. Zhang, L. Duan, H. Chen, J. Zeng, Q. Zhou, S. Wang, W. Gu, M. Liu, J. Ren, X. Gu, S. Zhang, Y. Wang, K. Yasukawa, H.J. Bouwmeester, X. Qi, Z. Zhang, W.J. Lucas, S. Huang, Biosynthesis, regulation, and domestication of bitterness in cucumber, Science 346 (2014) 1084–1088.

[48]

D.H. Chitwood, A. Ranjan, C.C. Martinez, L.R. Headland, T. Thiem, R. Kumar, M.F. Covington, T. Hatcher, D.T. Naylor, S. Zimmerman, N. Downs, N. Raymundo, E.S. Buckler, J.N. Maloof, M. Aradhya, B. Prins, L. Li, S. Myles, N.R. Sinha, A modern ampelography: a genetic basis for leaf shape and venation patterning in grape, Plant Physiol. 164 (2014) 259–272.

[49]

F. Tian, P.J. Bradbury, P.J. Brown, H. Hung, Q. Sun, S. Flint-Garcia, T.R. Rocheford, M.D. McMullen, J.B. Holland, E.S. Buckler, Genome-wide association study of leaf architecture in the maize nested association mapping population, Nat. Genet. 43 (2011) 159–162.

[50]

K.L. Kump, P.J. Bradbury, R.J. Wisser, E.S. Buckler, A.R. Belcher, M.A. Oropeza-Rosas, J.C. Zwonitzer, S. Kresovich, M.D. McMullen, D. Ware, P.J. Balint-Kurti, J.B. Holland, Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population, Nat. Genet. 43 (2011) 163–168.

[51]

J.A. Poland, P.J. Bradbury, E.S. Buckler, R.J. Nelson, Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 6893–6898.

[52]

P. Beyer, S. Al-Babili, X. Ye, P. Lucca, P. Schaub, R. Welsch, I. Potrykus, Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency, J. Nutr. 132 (2002) 506S–510S.

[53]

P. Beyer, Golden Rice and ‘Golden’ crops for human nutrition, New Biotechnol. 27 (2010) 478–481.

[54]

J. Yan, C.B. Kandianis, C.E. Harjes, L. Bai, E.H. Kim, X. Yang, D.J. Skinner, Z. Fu, S. Mitchell, Q. Li, M.G. Fernandez, M. Zaharieva, R. Babu, Y. Fu, N. Palacios, J. Li, D. DellaPenna, T. Brutnell, E.S. Buckler, M.L. Warburton, T. Rocheford, Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain, Nat. Genet. 42 (2010) 322–327.

[55]

R. Yang, Z. Yan, Q. Wang, X. Li, F. Feng, Marker-assisted backcrossing of lcyE for enhancement of proA in sweet corn, Euphytica 214 (2018).

[56]

J. Yu, J.B. Holland, M.D. McMullen, E.S. Buckler, Genetic design and statistical power of nested association mapping in maize, Genetics 178 (2008) 539–551.

[57]

A. Korte, A. Farlow, The advantages and limitations of trait analysis with GWAS: a review, Plant Methods 9 (2013) 29.

The Crop Journal
Pages 341-350
Cite this article:
Xiao Y, Yu Y, Li G, et al. Genome-wide association study of vitamin E in sweet corn kernels. The Crop Journal, 2020, 8(2): 341-350. https://doi.org/10.1016/j.cj.2019.08.002

278

Views

5

Downloads

23

Crossref

N/A

Web of Science

25

Scopus

3

CSCD

Altmetrics

Received: 21 February 2019
Revised: 04 July 2019
Accepted: 23 August 2019
Published: 20 October 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return