AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Association mapping for root system architecture traits under two nitrogen conditions in germplasm enhancement of maize doubled haploid lines

Langlang Maa,b,1Chunyan Qingb,1Ursula FreiaYaou Shenb( )Thomas Lübberstedta( )
Department of Agronomy, Iowa State University, Ames 50010, USA
Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China

1 These authors contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Root system architecture (RSA) contributes to nitrogen (N) uptake and utilization in maize. In this study, a germplasm enhancement of maize double haploid population of 226 lines genotyped with 61,634 SNPs was used to investigate the genetic basis of RSA under two N levels using a genome-wide association study (GWAS). GLM + PCA, FarmCPU, and MLM models were utilized to balance false positives and false negatives. In total, 33 and 51 significant SNP-trait associations were detected under high and low N conditions, respectively. Under high N, SNP S9_2483543 was detected by all models. Linkage disequilibrium (LD) regions of some SNPs overlapped with the intervals of QTL for RSA and N response that were detected in previous studies. In particular, several known genes, Rtcs, Rtcl, Rtcl, and Ms44, were located in the LD regions of S1_9992325, S9_151726472, S9_154381179, and S4_197073985, respectively. Among the candidate genes identified by this study, GRMZM2G139811, GRMZM2G314898, GRMZM2G054050, GRMZM2G173682, GRMZM2G470914, GRMZM2G462325, GRMZM2G416184, and GRMZM2G064302 were involved in seedling, seed, and root system development or N metabolism in Arabidopsis or rice. The markers identified in this study can be used for marker-assisted selection of RSA traits to improve nitrogen use efficiency in maize breeding, and the candidate genes will contribute to further understanding of the genetic basis of RSA under diverse N conditions.

References

[1]

J. Liu, J. Li, F. Chen, F. Zhang, T. Ren, Z. Zhuang, G. Mi, Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize, Zea mays L Plant Soil 305 (2008) 253–265.

[2]

J.F. Power, J.S. Schepers, Nitrate contamination of groundwater in North America, Agric. Ecosyst. Environ. 26 (1989) 165–187.

[3]

P.M. Vitousek, J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, D.G. Tilman, Human alteration of the global nitrogen cycle: sources and consequences, Ecol. Appl. 7 (1997) 737–750.

[4]

C. Jansen, T. Lübberstedt, Turning maize cobs into a valuable feedstock, Bioenergy Res. 5 (2012) 20–31.

[5]

D.L. Sanchez, S. Liu, R. Ibrahim, M. Blanco, T. Lübberstedt, Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.), Plant Sci. 268 (2018) 30–38.

[6]

A.H. Abdel-Ghani, B. Kumar, J. Reyes-Matamoros, P.J. Gonzalez-Portilla, C. Jansen, J.P. San Martin, M. Lee, T. Lübberstedt, Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels, Euphytica 189 (2013) 123–133.

[7]

H. Cai, F. Chen, G. Mi, F. Zhang, H.P. Maurer, W. Liu, J.C. Reif, L. Yuan, Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages, Theor. Appl. Genet. 125 (2012) 1313–1324.

[8]
F. Hochholdinger, The maize root system: morphology, anatomy, and genetics, Handbook of Maize: Its Biology 2009, pp. 145–160.
[9]

D.C. Hoppe, M.E. McCully, C.L. Wenzel, The nodal roots of Zea: their development in relation to structural features of the stem, Can. J. Bot. 64 (1986) 2524–2537.

[10]

J. Lynch, Root architecture and plant productivity, Plant Physiol. 109 (1995) 7–13.

[11]

J. Pace, C. Gardner, C. Romay, B. Ganapathysubramanian, T. Lübberstedt, Genome-wide association analysis of seedling root development in maize (Zea mays L.), BMC Genomics 16 (2015) 47.

[12]

M.C. Romay, M.J. Millard, J.C. Glaubitz, J.A. Peiffer, K.L. Swarts, T.M. Casstevens, R.J. Elshire, C.B. Acharya, S.E. Mitchell, S.A. Flint-Garcia, M.D. McMullen, J.B. Holland, E.S. Buckler, C.A. Gardner, Comprehensive genotyping of the USA national maize inbred seed bank, Genome Biol. 14 (2013) R55.

[13]

H.A.S. Agrama, A.G. Zakaria, F.B. Said, M. Tuinstra, Identification of quantitative trait loci for nitrogen use efficiency in maize, Mol. Breed. 5 (1999) 187–195.

[14]

J.M. Ribaut, Y. Fracheboud, P. Monneveux, M. Banziger, M. Vargas, C. Jiang, Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize, Mol. Breed. 20 (2007) 15–29.

[15]

F. Hochholdinger, P. Yu, C. Marcon, Genetic control of root system development in maize, Trends Plant Sci. 23 (2018) 79–88.

[16]

G. Taramino, M. Sauer, J.L. Stauffer Jr., D. Multani, X. Niu, H. Sakai, F. Hochholdinger, The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation, Plant J. 50 (2007) 649–659.

[17]

C. Xu, H. Tai, M. Saleem, Y. Ludwig, C. Majer, K.W. Berendzen, K.A. Nagel, T. Wojciechowski, R.B. Meeley, G. Taramino, F. Hochholdinger, Cooperative action of the paralogous maize lateral organ boundaries (LOB) domain proteins RTCS and RTCL in shoot-borne root formation, New Phytol. 207 (2015) 1123–1133.

[18]

F. Hochholdinger, T.J. Wen, R. Zimmermann, P. Chimot-Marolle, O. Da Costa e Silva, W. Bruce, K.R. Larmkey, U. Wienand, P.S. Schnable, The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield, Plant J. 54 (2008) 888–898.

[19]

L. Li, S. Hey, S. Liu, Q. Liu, C. McNinch, H.C. Hu, T.J. Wen, C. Marcon, A. Paschold, W. Bruce, P.S. Schnable, F. Hochholdinger, Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth, Sci. Rep. 6 (2016) 34395.

[20]

J. Nestler, S. Liu, T.J. Wen, A. Paschold, C. Marcon, H.M. Tang, D. Li, L. Li, R.B. Meeley, H. Sakai, W. Bruce, P.S. Schnable, F. Hochholdinger, Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase, Plant J. 79 (2014) 729–740.

[21]

B.W. Penning, C.T. Hunter, R. Tayengwa, A.L. Eveland, C.K. Dugard, A.T. Olek, W. Vermerris, K.E. Koch, D.R. McCarty, M.F. Davis, S.R. Thomas, M.C. McCann, N.C. Carpita, Genetic resources for maize cell wall biology, Plant Physiol. 151 (2009) 1703–1728.

[22]

T.J. Wen, F. Hochholdinger, M. Sauer, W. Bruce, P.S. Schnable, The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis, Plant Physiol. 138 (2005) 1637–1643.

[23]

M. Suzuki, Y. Sato, S. Wu, B.H. Kang, D.R. McCarty, Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate, Plant Cell 27 (2015) 2288–2300.

[24]

I. von Behrens, M. Komatsu, Y. Zhang, K.W. Berendzen, X. Niu, H. Sakai, G. Taramino, F. Hochholdinger, Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize, Plant J. 66 (2011) 341–353.

[25]

C. Marchive, F. Roudier, L. Castaings, V. Bréhaut, E. Blondet, V. Colot, C. Meyer, A. Krapp, Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants, Nat. Commun. 4 (2013) 1713.

[26]

H.C. Hu, Y.Y. Wang, Y.F. Tsay, AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response, Plant J. 57 (2009) 264–278.

[27]

Y.M. BI, S. Kant, J. Clark, S. Gidda, F. Ming, J. Xu, A. Rochon, B.J. Shelp, L. Hao, R. Zhao, R.T. Mullen, T. Zhu, S.J. Rothstein, Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling, Plant Cell Environ. 32 (2009) 1749–1760.

[28]

K. Ishiyama, E. Inoue, M. Tabuchi, T. Yamaya, H. Takahashi, Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots, Plant Cell Physiol. 45 (2004) 1640–1647.

[29]

G. Xu, X. Fan, A.J. Miller, Plant nitrogen assimilation and use efficiency, Annu. Rev. Plant Biol. 63 (2012) 153–182.

[30]

J. Fu, H. Tian, Y.J. Gao, Study progress of molecular approaches in improving nitrogen use efficiency of crop plants, Soil Fertil. Sci. China 4 (2013) 79–82.

[31]

T. Kurai, M. Wakayama, T. Abiko, S. Yanagisawa, N. Aoki, R. Ohsugi, Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions, Plant Biotechnol. J. 9 (2001) 826–837.

[32]

A. Martin, J. Lee, T. Kichey, D. Gerentes, M. Zivy, C. Tatout, F. Dubois, T. Balliau, B. Valot, M. Davanture, T. Tercé-Laforgue, I. Quilleré, M. Coque, A. Gallais, M.B. Gonzalez-Moro, L. Bethencourt, D.Z. Habash, P.J. Lea, A. Charcosset, P. Perez, A. Murigneux, H. Sakakibara, K.J. Edwards, B. Hirel, Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production, Plant Cell 18 (2006) 3252–3274.

[33]

T. Fox, J. DeBruin, K.H. Collet, M. Trimnell, J. Clapp, A. Leonard, B. Li, E. Scolaro, S. Collinson, K. Glassman, M. Miller, J. Schussler, D. Dolan, L. Liu, C. Gho, M. Albertsen, D. Loussaert, B. Shen, A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize, Plant Biotechnol. J. 15 (2017) 942–952.

[34]

F.K. Röber, G.A. Gordillo, H.H. Geiger, In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding, Maydica 50 (2005) 275–283.

[35]

Z. Liu, Y. Wang, J. Ren, M. Mei, U.K. Frei, B. Trampe, T. Lübberstedt, Maize doubled haploids, Plant Breed. Rev. 40 (2016) 123–166.

[36]

J. Pace, N. Lee, H.S. Naik, B. Ganapathysubramanian, T. Lübberstedt, Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (Automatic Root Image Analysis), PLoS One 9 (2014), e108255.

[37]

A.E. Lipka, F. Tian, Q. Wang, J. Peiffer, M. Li, P.J. Bradbury, M.A. Gore, E.S. Buckler, Z. Zhang, GAPIT: genome association and prediction integrated tool, Bioinformatics 28 (2012) 2397–2399.

[38]

P.J. Bradbury, Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, E.S. Buckler, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633–2635.

[39]

X. Liu, M. Huang, B. Fan, E.S. Buckler, Z. Zhang, Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies, PLoS Genet. 12 (2016), e1005767.

[40]

X. Gao, L.C. Becker, D.M. Becker, J.D. Starmer, M.A. Province, Avoiding the high Bonferroni penalty in genome-wide association studies, Genet. Epidemiol. 34 (2010) 100–105.

[41]

R.C. Johnson, G.W. Nelson, J.L. Troyer, J.A. Lautenberger, B.D. Kessing, C.A. Winkler, S.J. O'Brien, Accounting for multiple comparisons in a genome-wide association study (GWAS), BMC Genomics 11 (2010) 724.

[42]

Y. Wang, J. Chen, Z. Guan, X. Zhang, Y. Zhang, L. Ma, Y. Yao, H. Peng, Q. Zhang, B. Zhang, P. Liu, C. Zou, Y. Shen, F. Ge, G. Pan, Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize, Mol. Genet. Genomics (2019) 1–20.

[43]

A. Vanous, C. Gardner, M. Blanco, A. Martin-Schwarze, A.E. Lipka, S. Flint-Garcia, M. Bohn, J. Edwards, T. Lübberstedt, Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines, Plant Genome 11 (2018) 170083.

[44]

J. Zhu, S.M. Mickelson, S.M. Kaeppler, J.P. Lynch, Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels, Theor. Appl. Genet. 113 (2006) 1–10.

[45]

B. Luo, H. Tang, H. Liu, S. Shunzong, S. Zhang, L. Wu, D. Liu, S. Gao, Mining for low-nitrogen tolerance genes by integrating meta-analysis and large-scale gene expression data from maize, Euphytica 206 (2015) 117–131.

[46]

A.H. Abdel-Ghani, D.L. Sanchez, B. Kumar, T. Lubberstedt, Paper roll culture and assessment of maize root parameters, Bio-protocol 6 (2016), e1926.

[47]

J.L. Bot, V. Serra, J. Fabre, X. Draye, S. Adamowicz, L. Pagès, DART: a software to analyse root system architecture and development from captured images, Plant Soil 326 (2010) 261–273.

[48]

P. Armengaud, K. Zambaux, A. Hills, R. Sulpice, R.J. Pattison, M.R. Blatt, A. Amtmann, EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture, Plant J. 57 (2009) 945–956.

[49]

M.I. Tenaillon, M.C. Sawkins, A.D. Long, R.L. Gaut, J.F. Doebley, B.S. Gaut, Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.), Proc. Natl. Acad. Sci, U.S.A. 98 (2001) 9161–9166.

[50]

D.L. Remington, J.M. Thornsberry, Y. Matsuoka, L.M. Wilson, S.R. Whitt, J. Doebley, S. Kresovich, M.M. Goodman, E.S. Buckler, Structure of linkage disequilibrium and phenotypic associations in the maize genome, Proc. Natl. Acad. Sci. U.S.A 98 (2001) 11479–11484.

[51]

A. Ching, K.S. Caldwell, M. Jung, M. Dolan, O.S. Smith, S. Tingey, M. Morgante, A.J. Rafalski, SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines, BMC Genet. 3 (2002) 19.

[52]

Y. Chen, M. Blanco, Q. Ji, U.K. Frei, T. Lübberstedt, Extensive genetic diversity and low linkage disequilibrium within the COMT locus in maize exotic populations, Plant Sci. 221 (2014) 69–80.

[53]

S. Hu, D.L. Sanchez, C. Wang, A.E. Lipka, Y. Yin, C.A.C. Gardner, T. Lübberstedt, Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.), Plant Sci. 263 (2017) 132–141.

[54]

L. Liu, N. Li, C. Yao, S. Meng, C. Song, Functional analysis of the ABA-responsive protein family in ABA and stress signal transduction in Arabidopsis, Chin. Sci. Bull. 58 (2013) 3721–3730.

[55]

M.N. Markakis, T.D. Cnodder, M. Lewandowski, D. Simon, A. Boron, D. Balcerowicz, T. Doubbo, L. Taconnat, J.P. Renou, H. Höfte, J.P. Verbelen, K. Vissenberg, Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana, BMC Plant Biol. 12 (2012) 208.

[56]

S. Abel, Phosphate sensing in root development, Curr. Opin. Plant Biol. 14 (2011) 303–309.

[57]

L. Ramaekers, R. Remans, I.M. Rao, M.W. Blair, J. Vanderleyden, Strategies for improving phosphorus acquisition efficiency of crop plants, Field Crops Res. 117 (2010) 169–176.

[58]

K. Yoshimoto, H. Hanaoka, S. Sato, T. Kato, S. Tabata, T. Noda, Y. Ohsumi, Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy, Plant Cell 16 (2004) 2967–2983.

[59]

H. Tanaka, M. Watanabe, M. Sasabe, T. Hiroe, T. Tanaka, H. Tsukaya, M. Ikezaki, C. Machida, Y. Machida, Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis, Development 134 (2007) 1643–1652.

[60]

K. Nakashima, Y. Fujita, N. Kanamori, T. Katagiri, T. Umezawa, S. Kidokoro, K. Maruyama, T. Yoshida, K. Ishiyama, M. Kobayashi, K. Shinozaki, K. Yamaguchi-Shinozaki, Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2. 2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy, Plant Cell Physiol. 50 (2009) 1345–1363.

[61]

Y. Li, X. Dai, Y. Cheng, Y. Zhao, NPY genes play an essential role in root gravitropic responses in Arabidopsis, Mol. Plant 4 (2011) 171–179.

[62]

V. Prabhakar, T. Löttgert, T. Gigolashvili, K. Bell, U.I. Flügge, R.E. Häusler, Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana, FEBS Lett. 583 (2009) 983–991.

The Crop Journal
Pages 213-226
Cite this article:
Ma L, Qing C, Frei U, et al. Association mapping for root system architecture traits under two nitrogen conditions in germplasm enhancement of maize doubled haploid lines. The Crop Journal, 2020, 8(2): 213-226. https://doi.org/10.1016/j.cj.2019.11.004

244

Views

2

Downloads

18

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 06 April 2019
Revised: 09 September 2019
Accepted: 25 November 2019
Published: 10 December 2019
© 2019 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return